Arithmetic of Abelian Varieties - Rational Points On Abelian Varieties

Rational Points On Abelian Varieties

The basic result (Mordell–Weil theorem) says that A(K), the group of points on A over K, is a finitely-generated abelian group. A great deal of information about its possible torsion subgroups is known, at least when A is an elliptic curve. The question of the rank is thought to be bound up with L-functions (see below).

The torsor theory here leads to the Selmer group and Tate–Shafarevich group, the latter (conjecturally finite) being difficult to study.

Read more about this topic:  Arithmetic Of Abelian Varieties

Famous quotes containing the words rational, points and/or varieties:

    No crime can ever be defended on rational grounds.
    Titus Livius (Livy)

    When our relatives are at home, we have to think of all their good points or it would be impossible to endure them. But when they are away, we console ourselves for their absence by dwelling on their vices.
    George Bernard Shaw (1856–1950)

    Now there are varieties of gifts, but the same Spirit; and there are varieties of services, but the same Lord; and there are varieties of activities, but it is the same God who activates all of them in everyone.
    Bible: New Testament, 1 Corinthians 12:4-6.