Number Theoretic Properties of Preperiodic Points
Let F(x) be a rational function of degree at least two with coefficients in Q. A theorem of Northcott says that F has only finitely many Q-rational preperiodic points, i.e., F has only finitely many preperiodic points in P1(Q). The Uniform Boundedness Conjecture of Morton and Silverman says that the number of preperiodic points of F in P1(Q) is bounded by a constant that depends only on the degree of F.
More generally, let F : PN → PN be a morphism of degree at least two defined over a number field K. Northcott's theorem says that F has only finitely many preperiodic points in PN(K), and the general Uniform Boundedness Conjecture says that the number of preperiodic points in PN(K) may be bounded solely in terms of N, the degree of F, and the degree of K over Q.
The Uniform Boundedness Conjecture is not known even for quadratic polynomials Fc(x) = x2+c over the rational numbers Q. It is known in this case that Fc(x) cannot have periodic points of period four, five, or six, although the result for period six is contingent on the validity of the conjecture of Birch and Swinnerton-Dyer. Poonen has conjectured that Fc(x) cannot have rational periodic points of any period strictly larger than three.
Read more about this topic: Arithmetic Dynamics
Famous quotes containing the words number, properties and/or points:
“The two great points of difference between a democracy and a republic are: first, the delegation of the government, in the latter, to a small number of citizens elected by the rest; secondly, the greater number of citizens and greater sphere of country over which the latter may be extended.”
—James Madison (17511836)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)
“Type of the wise, who soar, but never roam
True to the kindred points of Heaven and Home!”
—William Wordsworth (17701850)