Anthropic Principle - Anthropic Coincidences

Anthropic Coincidences

In 1961, Robert Dicke noted that the age of the universe, as seen by living observers, cannot be random. Instead, biological factors constrain the universe to be more or less in a "golden age," neither too young nor too old. If the universe were one tenth as old as its present age, there would not have been sufficient time to build up appreciable levels of metallicity (levels of elements besides hydrogen and helium) especially carbon, by nucleosynthesis. Small rocky planets did not yet exist. If the universe were 10 times older than it actually is, most stars would be too old to remain on the main sequence and would have turned into white dwarfs, aside from the dimmest red dwarfs, and stable planetary systems would have already come to an end. Thus, Dicke explained the coincidence between large dimensionless numbers constructed from the constants of physics and the age of the universe, a coincidence which had inspired Dirac's varying-G theory.

Dicke later reasoned that the density of matter in the universe must be almost exactly the critical density needed to prevent the Big Crunch (the "Dicke coincidences" argument). The most recent measurements may suggest that the observed density of baryonic matter, and some theoretical predictions of the amount of dark matter account for about 30% of this critical density, with the rest contributed by a cosmological constant. Steven Weinberg gave an anthropic explanation for this fact: he noted that the cosmological constant has a remarkably low value, some 120 orders of magnitude smaller than the value particle physics predicts (this has been described as the "worst prediction in physics"). However, if the cosmological constant were more than about 10 times its observed value, the universe would suffer catastrophic inflation, which would preclude the formation of stars, and hence life.

The observed values of the dimensionless physical constants (such as the fine-structure constant) governing the four fundamental interactions are balanced as if fine-tuned to permit the formation of commonly found matter and subsequently the emergence of life. A slight increase in the strong nuclear force would bind the dineutron and the diproton, and nuclear fusion would have converted all hydrogen in the early universe to helium. Water, as well as sufficiently long-lived stable stars, both essential for the emergence of life as we know it, would not exist. More generally, small changes in the relative strengths of the four fundamental interactions can greatly affect the universe's age, structure, and capacity for life.

Read more about this topic:  Anthropic Principle

Famous quotes containing the word coincidences:

    Only ambition is fired by the coincidences of success and easy accomplishment but nothing is quite as splendidly uplifting to the heart as the defeat of a human being who battles against the invincible superiority of fate. This is always the most grandiose of all tragedies, one sometimes created by a dramatist but created thousands of times by life.
    Stefan Zweig (18811942)