Anisohedral Tiling - Isohedral Numbers

Isohedral Numbers

The problem of anisohedral tiling has been generalised by saying that the isohedral number of a tile is the least number of orbits (equivalence classes) of tiles in any tiling of that tile under the action of the symmetry group of that tiling, and that a tile with isohedral number k is k-anisohedral. Berglund asked whether there exist k-anisohedral tiles for all k, giving examples for k ≤ 4 (examples of 2-anisohedral and 3-anisohedral tiles being previously known, while the 4-anisohedral tile given was the first such published tile). Goodman-Strauss considered this in the context of general questions about how complex the behaviour of a given tile or set of tiles can be, noting an 10-anisohedral example of Myers. Grünbaum and Shephard had previously raised a slight variation on the same question.

Socolar showed in 2007 that arbitrarily high isohedral numbers can be achieved in two dimensions if the tile is disconnected, or has coloured edges with constraints on what colours can be adjacent, and in three dimensions with a connected tile without colours, noting that in two dimensions for a connected tile without colours the highest known isohedral number is 10.

Joseph Myers has produced a truly remarkably collection of tiles with high isohedral numbers, particularly a polyhexagon with isohedral number 10 (occurring in 20 orbits under translation) and another with isohedral number 9 (occurring in 36 orbits under translation).

Read more about this topic:  Anisohedral Tiling

Famous quotes containing the word numbers:

    Green grow the rushes-O
    What is your one-O?
    —Unknown. Carol of the Numbers (l. 2–3)