Analytical Chemistry - Applications

Applications

Analytical chemistry research is largely driven by performance (sensitivity, selectivity, robustness, linear range, accuracy, precision, and speed), and cost (purchase, operation, training, time, and space). Among the main branches of contemporary analytical atomic spectrometry, the most widespread and universal are optical and mass spectrometry. In the direct elemental analysis of solid samples, the new leaders are laser-induced breakdown and laser ablation mass spectrometry, and the related techniques with transfer of the laser ablation products into inductively coupled plasma. Advances in design of diode lasers and optical parametric oscillators promote developments in fluorescence and ionization spectrometry and also in absorption techniques where uses of optical cavities for increased effective absorption pathlength are expected to expand. Steady progress and growth in applications of plasma- and laser-based methods are noticeable. An interest towards the absolute (standardless) analysis has revived, particularly in the emission spectrometry.

A lot of effort is put in shrinking the analysis techniques to chip size. Although there are few examples of such systems competitive with traditional analysis techniques, potential advantages include size/portability, speed, and cost. (micro Total Analysis System (┬ÁTAS) or Lab-on-a-chip). Microscale chemistry reduces the amounts of chemicals used.

Much effort is also put into analyzing biological systems. Examples of rapidly expanding fields in this area are:

  • Genomics - DNA sequencing and its related research. Genetic fingerprinting and DNA microarray are very popular tools and research fields.
  • Proteomics - the analysis of protein concentrations and modifications, especially in response to various stressors, at various developmental stages, or in various parts of the body.
  • Metabolomics - similar to proteomics, but dealing with metabolites.
  • Transcriptomics - mRNA and its associated field
  • Lipidomics - lipids and its associated field
  • Peptidomics - peptides and its associated field
  • Metalomics - similar to proteomics and metabolomics, but dealing with metal concentrations and especially with their binding to proteins and other molecules.

Analytical chemistry has played critical roles in the understanding of basic science to a variety of practical applications, such as biomedical applications, environmental monitoring, quality control of industrial manufacturing, forensic science and so on.

The recent developments of computer automation and information technologies have innervated analytical chemistry to initiate a number of new biological fields. For example, automated DNA sequencing machines were the basis to complete human genome projects leading to the birth of genomics. Protein identification and peptide sequencing by mass spectrometry opened a new field of proteomics. Furthermore, a number of ~omics based on analytical chemistry have become important areas in modern biology.

Also, analytical chemistry has been an indispensable area in the development of nanotechnology. Surface characterization instruments, electron microscopes and scanning probe microscopes enables scientists to visualize atomic structures with chemical characterizations.

Among active contemporary analytical chemistry research fields, micro total analysis system is considered as a great promise of revolutionary technology. In this approach, integrated and miniaturized analytical systems are being developed to control and analyze single cells and single molecules. This cutting-edge technology has a promising potential of leading a new revolution in science as integrated circuits did in computer developments.

Read more about this topic:  Analytical Chemistry