Definition
There are several equivalent definitions of analytic set. The following conditions on a subspace A of a Polish space are equivalent:
- A is analytic.
- A is empty or a continuous image of the Baire space ωω.
- A is a Suslin space, in other words A is the image of a Polish space under a continuous mapping.
- A is the continuous image of a Borel set in a Polish space.
- A is a Suslin set, the image of the Suslin operation.
- There is a Polish space and a Borel set such that is the projection of ; that is,
- A is the projection of a closed set in X times the Baire space.
- A is the projection of a Gδ set in X times the Cantor space.
An alternative characterization, in the specific, important, case that is Baire space, is that the analytic sets are precisely the projections of trees on . Similarly, the analytic subsets of Cantor space are precisely the projections of trees on .
Read more about this topic: Analytic Set
Famous quotes containing the word definition:
“The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.”
—Samuel Taylor Coleridge (17721834)
“Scientific method is the way to truth, but it affords, even in
principle, no unique definition of truth. Any so-called pragmatic
definition of truth is doomed to failure equally.”
—Willard Van Orman Quine (b. 1908)
“Its a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was mine.”
—Jane Adams (20th century)