Amphibian - Evolution

Evolution

Main article: Labyrinthodontia See also: List of prehistoric amphibians

The first major groups of amphibians developed in the Devonian period, approximately 370 million years ago, from lobe-finned fish similar to the modern coelacanth and lungfish, which had evolved multi-jointed leg-like fins with digits that enabled them to crawl along the sea bottom. Some fish had developed primitive lungs to help them breathe air when the stagnant pools of the Devonian swamps were low in oxygen. They could also use their strong fins to hoist themselves out of the water and onto dry land if circumstances so required. Eventually, their bony fins would evolve into limbs and they would become the ancestors to all tetrapods, including modern amphibians, reptiles, birds, and mammals. Despite being able to crawl on land, many of these prehistoric tetrapodomorph fish still spent most of their time in the water. They had started to develop lungs, but still breathed predominantly with gills.

Ichthyostega was one of the first primitive amphibians, with nostrils and more efficient lungs. It had four sturdy limbs, a neck, a tail with fins and a skull very similar to that of the lobe-finned fish, Eusthenopteron. Amphibians evolved adaptations that allowed them to stay out of the water for longer periods. Their lungs improved and their skeletons became heavier and stronger, better able to cope with the increased gravitational effect of life on land. They developed "hands" and "feet" with five digits; the skin became more capable of retaining body fluids and resisting desiccation. The fish's hyomandibula bone in the hyoid region behind the gills diminished in size and became the stapes of the amphibian ear, an adaptation necessary for hearing on dry land. An affinity between the amphibians and the teleost fish is the multi-folded structure of the teeth and the paired supra-occipital bones at the back of the head, neither of which features is found elsewhere in the animal kingdom.

At the end of the Devonian period (360 million years ago), the seas, rivers and lakes were teeming with life but the land was the realm of early plants and devoid of vertebrates, though some, such as Ichthyostega, may have sometimes hauled themselves out of the water. In the early Carboniferous (360 to 345 million years ago), the climate became wet and warm. Extensive swamps developed with mosses, ferns, horsetails and calamites. Air-breathing arthropods started to evolve and invaded the land where they provided food for the carnivorous amphibians that began to emerge from the waters. There were no other tetrapods on the land and the amphibians were at the top of the food chain, occupying the ecological position currently held by the crocodile. Though equipped with limbs and the ability to breathe air, most still had a long tapering body and strong tail. They were the top land predators, sometimes reaching several metres in length, preying on the large insects of the period and the many types of fish in the water. They still needed to return to water to lay their shell-less eggs, and even most modern amphibians have a fully aquatic larval stage with gills like their fish ancestors. It was the development of the amniotic egg, which prevents the developing embryo from drying out, that enabled the reptiles to reproduce on land and which led to their dominance in the period that followed.

During the Triassic Period (250 to 200 million years ago), the reptiles began to out-compete the amphibians, leading to a reduction in both the amphibians' size and their importance in the biosphere. According to the fossil record, Lissamphibia, which includes all modern amphibians and is the only surviving lineage, may have branched off from the extinct groups Temnospondyli and Lepospondyli at some period between the Late Carboniferous and the Early Triassic. The relative scarcity of fossil evidence prevents precise dating, but the most recent molecular study, based on multilocus sequence typing, suggests a Late Carboniferous/Early Permian origin of extant amphibians.

The origins and evolutionary relationships between the three main groups of amphibians is a matter of debate. A 2005 molecular phylogeny, based on rDNA analysis, suggests that salamanders and caecilians are more closely related to each other than they are to frogs. It also appears that the divergence of the three groups took place in the Paleozoic or early Mesozoic, before the breakup of the supercontinent Pangaea and soon after their divergence from the lobe-finned fish. The briefness of this period, and the swiftness with which radiation took place, would help account for the relative scarcity of primitive amphibian fossils. There are large gaps in the fossil record, but the discovery of a proto-frog from the Early Permian in Texas in 2008 provided a missing link with many of the characteristics of modern frogs. Molecular analysis suggests that the frog–salamander divergence took place considerably earlier than the palaeontological evidence indicates.

When they evolved from lunged fish, amphibians had to make certain adaptations for living on land. They needed to develop new means of locomotion to replace the sideways thrusts of their tails that had been used for swimming. Their vertebral columns, limbs, limb girdles and musculature needed to be strong enough to raise them off the ground for locomotion and feeding. Terrestrial adults discarded their lateral line systems and adapted their sensory systems to receive stimuli via the medium of air. They needed to develop new methods to regulate their body heat in order to cope with fluctuations in ambient temperature. They developed behaviours suitable for reproduction in a terrestrial environment. Their skins were exposed to harmful ultraviolet rays that had previously been absorbed by the water. The skin changed to become more protective and prevent excessive water loss.

Read more about this topic:  Amphibian

Famous quotes containing the word evolution:

    As a natural process, of the same character as the development of a tree from its seed, or of a fowl from its egg, evolution excludes creation and all other kinds of supernatural intervention.
    Thomas Henry Huxley (1825–95)

    Analyze theory-building how we will, we all must start in the middle. Our conceptual firsts are middle-sized, middle-distanced objects, and our introduction to them and to everything comes midway in the cultural evolution of the race.
    Willard Van Orman Quine (b. 1908)

    What we think of as our sensitivity is only the higher evolution of terror in a poor dumb beast. We suffer for nothing. Our own death wish is our only real tragedy.
    Mario Puzo (b. 1920)