Amorphous Computing

Amorphous computing refers to computational systems that use very large numbers of identical, parallel processors each having limited computational ability and local interactions. The term Amorphous Computing was coined at MIT in 1996 in a paper entitled "Amorphous Computing Manifesto" by Abelson, Knight, Sussman, et al.

Examples of naturally occurring amorphous computations can be found in many fields, such as: developmental biology (the development of multicellular organisms from a single cell), molecular biology (the organization of sub-cellular compartments and intra-cell signaling), neural networks, and chemical engineering (non-equilibrium systems) to name a few. The study of amorphous computation is hardware agnostic -- it is not concerned with the physical substrate (biological, electronic, nanotech, etc.) but rather with the characterization of amorphous algorithms as abstractions with the goal of both understanding existing natural examples and engineering novel systems.

Amorphous computers tend to have many of the following properties:

  • Implemented by redundant, potentially faulty, massively parallel devices.
  • Devices having limited memory and computational abilities.
  • Devices being asynchronous.
  • Devices having no a priori knowledge of their location.
  • Devices communicating only locally.
  • Exhibit emergent or self-organizational behavior (patterns or states larger than an individual device).
  • Fault-tolerant, especially to the occasional malformed device or state perturbation.

Read more about Amorphous Computing:  Algorithms, Tools, and Patterns, Researchers and Labs, Documents

Famous quotes containing the word amorphous:

    I feel like a white granular mass of amorphous crystals—my formula appears to be isomeric with Spasmotoxin. My aurochloride precipitates into beautiful prismatic needles. My Platinochloride develops octohedron crystals,—with a fine blue florescence. My physiological action is not indifferent. One millionth of a grain injected under the skin of a frog produced instantaneous death accompanied by an orange blossom odor.
    Lafcadio Hearn (1850–1904)