Other Results
In every known case, the numbers of a pair are either both even or both odd. It is not known whether an even-odd pair of amicable numbers exists, but if it does, the even number must either be a square number or twice one, and the odd number must be a square number. Also, every known pair shares at least one common factor, higher than 1. It is not known whether a pair of coprime amicable numbers exists, though if any does, the product of the two must be greater than 1067. Also, a pair of coprime amicable numbers cannot be generated by Thabit's formula (above), nor by any similar formula.
In 1955, Paul Erdős showed that the density of amicable numbers, relative to the positive integers, was 0.
Read more about this topic: Amicable Numbers
Famous quotes containing the word results:
“The chief benefit, which results from philosophy, arises in an indirect manner, and proceeds more from its secret, insensible influence, than from its immediate application.”
—David Hume (17111776)
“Nothing is as difficult as to achieve results in this world if one is filled full of great tolerance and the milk of human kindness. The person who achieves must generally be a one-ideaed individual, concentrated entirely on that one idea, and ruthless in his aspect toward other men and other ideas.”
—Corinne Roosevelt Robinson (18611933)