Alternating Polynomial - Representation Theory

Representation Theory

For more details on this topic, see Representation theory of the symmetric group.

From the perspective of representation theory, the symmetric and alternating polynomials are subrepresentations of the action of the symmetric group on n letters on the polynomial ring in n variables. (Formally, the symmetric group acts on n letters, and thus acts on derived objects, particularly free objects on n letters, such as the ring of polynomials.)

The symmetric group has two 1-dimensional representations: the trivial representation and the sign representation. The symmetric polynomials are the trivial representation, and the alternating polynomials are the sign representation. Formally, the scalar span of any symmetric (resp., alternating) polynomial is a trivial (resp., sign) representation of the symmetric group, and multiplying the polynomials tensors the representations.

In characteristic 2, these are not distinct representations, and the analysis is more complicated.

If, there are also other subrepresentations of the action of the symmetric group on the ring of polynomials, as discussed in representation theory of the symmetric group.

Read more about this topic:  Alternating Polynomial

Famous quotes containing the word theory:

    A theory of the middle class: that it is not to be determined by its financial situation but rather by its relation to government. That is, one could shade down from an actual ruling or governing class to a class hopelessly out of relation to government, thinking of gov’t as beyond its control, of itself as wholly controlled by gov’t. Somewhere in between and in gradations is the group that has the sense that gov’t exists for it, and shapes its consciousness accordingly.
    Lionel Trilling (1905–1975)