Almost Disjoint Sets - Definition

Definition

The most common choice is to take "small" to mean finite. In this case, two sets are almost disjoint if their intersection is finite, i.e. if

(Here, '|X|' denotes the cardinality of X, and '< ∞' means 'finite'.) For example, the closed intervals and are almost disjoint, because their intersection is the finite set {1}. However, the unit interval and the set of rational numbers Q are not almost disjoint, because their intersection is infinite.

This definition extends to any collection of sets. A collection of sets is pairwise almost disjoint or mutually almost disjoint if any two distinct sets in the collection are almost disjoint. Often the prefix "pairwise" is dropped, and a pairwise almost disjoint collection is simply called "almost disjoint".

Formally, let I be an index set, and for each i in I, let Ai be a set. Then the collection of sets {Ai : i in I} is almost disjoint if for any i and j in I,

For example, the collection of all lines through the origin in R2 is almost disjoint, because any two of them only meet at the origin. If {Ai} is an almost disjoint collection, then clearly its intersection is finite:

However, the converse is not true—the intersection of the collection

is empty, but the collection is not almost disjoint; in fact, the intersection of any two distinct sets in this collection is infinite.

Read more about this topic:  Almost Disjoint Sets

Famous quotes containing the word definition:

    I’m beginning to think that the proper definition of “Man” is “an animal that writes letters.”
    Lewis Carroll [Charles Lutwidge Dodgson] (1832–1898)

    The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.
    William James (1842–1910)

    Scientific method is the way to truth, but it affords, even in
    principle, no unique definition of truth. Any so-called pragmatic
    definition of truth is doomed to failure equally.
    Willard Van Orman Quine (b. 1908)