Allometry - Allometric Scaling

Allometric Scaling

Allometric scaling is any change that deviates from isometry. A classic example is the skeleton of mammals, which becomes much more robust and massive relative to the size of the body as the body size increases. Allometry is often expressed in terms of a scaling exponent based on body mass, or body length (Snout-vent length, total length etc.). A perfectly isometrically scaling organism would see all volume-based properties change proportionally to the body mass, all surface area-based properties change with mass to the power 2/3, and all length-based properties change with mass to the 1/3 power. If, after statistical analyses, for example, a volume-based property was found to scale to mass to the 0.9 power, then this would be called "negative allometry", as the values are smaller than predicted by isometry. Conversely, if a surface area based property scales to mass to the 0.8 power, the values are higher than predicted by isometry and the organism is said to show "positive allometry". One example of positive allometry occurs among species of monitor lizards (family Varanidae), in which the limbs are relatively longer in larger-bodied species.

Read more about this topic:  Allometry