Algorithmic Information Theory - Overview

Overview

Algorithmic information theory principally studies complexity measures on strings (or other data structures). Because most mathematical objects can be described in terms of strings, or as the limit of a sequence of strings, it can be used to study a wide variety of mathematical objects, including integers and real numbers.

This use of the term "information" might be a bit misleading, as it depends upon the concept of compressibility. Informally, from the point of view of algorithmic information theory, the information content of a string is equivalent to the length of the shortest possible self-contained representation of that string. A self-contained representation is essentially a program – in some fixed but otherwise irrelevant universal programming language – that, when run, outputs the original string.

From this point of view, a 3000 page encyclopedia actually contains less information than 3000 pages of completely random letters, despite the fact that the encyclopedia is much more useful. This is because to reconstruct the entire sequence of random letters, one must know, more or less, what every single letter is. On the other hand, if every vowel were removed from the encyclopedia, someone with reasonable knowledge of the English language could reconstruct it, just as one could likely reconstruct the sentence "Ths sntnc hs lw nfrmtn cntnt" from the context and consonants present. For this reason, high-information strings and sequences are sometimes called "random"; people also sometimes attempt to distinguish between "information" and "useful information" and attempt to provide rigorous definitions for the latter, with the idea that the random letters may have more information than the encyclopedia, but the encyclopedia has more "useful" information.

Unlike classical information theory, algorithmic information theory gives formal, rigorous definitions of a random string and a random infinite sequence that do not depend on physical or philosophical intuitions about nondeterminism or likelihood. (The set of random strings depends on the choice of the universal Turing machine used to define Kolmogorov complexity, but any choice gives identical asymptotic results because the Kolmogorov complexity of a string is invariant up to an additive constant depending only on the choice of universal Turing machine. For this reason the set of random infinite sequences is independent of the choice of universal machine.)

Some of the results of algorithmic information theory, such as Chaitin's incompleteness theorem, appear to challenge common mathematical and philosophical intuitions. Most notable among these is the construction of Chaitin's constant Ω, a real number which expresses the probability that a self-delimiting universal Turing machine will halt when its input is supplied by flips of a fair coin (sometimes thought of as the probability that a random computer program will eventually halt). Although Ω is easily defined, in any consistent axiomatizable theory one can only compute finitely many digits of Ω, so it is in some sense unknowable, providing an absolute limit on knowledge that is reminiscent of Gödel's Incompleteness Theorem. Although the digits of Ω cannot be determined, many properties of Ω are known; for example, it is an algorithmically random sequence and thus its binary digits are evenly distributed (in fact it is normal).

Read more about this topic:  Algorithmic Information Theory