Algebraic Torus - Arithmetic Invariants

Arithmetic Invariants

In his work on Tamagawa numbers, T. Ono introduced a type of functorial invariants of tori over finite separable extensions of a chosen field k. Such an invariant is a collection of positive real-valued functions fK on isomorphism classes of tori over K, as K runs over finite separable extensions of k, satisfying three properties:

  1. Multiplicativity: Given two tori T1 and T2 over K, fK(T1 × T2) = fK(T1) fK(T2)
  2. Restriction: For a finite separable extension L/K, fL evaluated on an L torus is equal to fK evaluated on its restriction of scalars to K.
  3. Projective triviality: If T is a torus over K whose weight lattice is a projective Galois module, then fK(T) = 1.

T. Ono showed that the Tamagawa number of a torus over a number field is such an invariant. Furthermore, he showed that it is a quotient of two cohomological invariants, namely the order of the group (sometimes mistakenly called the Picard group of T, although it doesn't classify Gm torsors over T), and the order of the Tate–Shafarevich group.

The notion of invariant given above generalizes naturally to tori over arbitrary base schemes, with functions taking values in more general rings. While the order of the extension group is a general invariant, the other two invariants above do not seem to have interesting analogues outside the realm of fraction fields of one-dimensional domains and their completions.

Read more about this topic:  Algebraic Torus

Famous quotes containing the word arithmetic:

    Under the dominion of an idea, which possesses the minds of multitudes, as civil freedom, or the religious sentiment, the power of persons are no longer subjects of calculation. A nation of men unanimously bent on freedom, or conquest, can easily confound the arithmetic of statists, and achieve extravagant actions, out of all proportion to their means; as, the Greeks, the Saracens, the Swiss, the Americans, and the French have done.
    Ralph Waldo Emerson (1803–1882)