Coxeter Groups
There are a number of analogous results between algebraic groups and Coxeter groups – for instance, the number of elements of the symmetric group is, and the number of elements of the general linear group over a finite field is the q-factorial ; thus the symmetric group behaves as though it were a linear group over "the field with one element". This is formalized by the field with one element, which considers Coxeter groups to be simple algebraic groups over the field with one element.
Read more about this topic: Algebraic Group
Famous quotes containing the word groups:
“If we can learn ... to look at the ways in which various groups appropriate and use the mass-produced art of our culture ... we may well begin to understand that although the ideological power of contemporary cultural forms is enormous, indeed sometimes even frightening, that power is not yet all-pervasive, totally vigilant, or complete.”
—Janice A. Radway (b. 1949)