Air Entrainment - Air Entrainment in Hydraulic Structures

Air Entrainment in Hydraulic Structures

In hydraulic engineering, air bubble entrainment is defined as the entrapment of air bubbles and pockets that are advected within the turbulent flow. The entrainment of air packets can be localised or continuous along the air–water interface. Examples of localised aeration include air entrainment by plunging water jet and at hydraulic jump. Bubbles are entrained locally at the intersection of the impinging jet with the surrounding waters. The intersecting perimeter is a singularity in terms of both air entrainment and momentum exchange, and the air is entrapped at the discontinuity between the impinging jet flow and the receiving pool of water. Interfacial aeration is defined as the air entrainment process along an air–water interface, usually parallel to the flow direction.

In hydraulic structures, free-surface aeration is commonly observed: i.e., the white waters. The air bubble entrainment may be localised or continuous along an interface (water jets, spillway chutes). Despite recent advances, there are some basic concerns about the extrapolation of laboratory results to large size prototype structures.

Read more about this topic:  Air Entrainment

Famous quotes containing the words air and/or structures:

    The air is precious to the red man, for all things share the same breath—the beast, the tree, the man, they all share the same breath. The white man does not seem to notice the air he breathes. Like a man dying for many days, he is numb to the stench.
    Attributed to Seattle (c. 1784–1866)

    It is clear that all verbal structures with meaning are verbal imitations of that elusive psychological and physiological process known as thought, a process stumbling through emotional entanglements, sudden irrational convictions, involuntary gleams of insight, rationalized prejudices, and blocks of panic and inertia, finally to reach a completely incommunicable intuition.
    Northrop Frye (b. 1912)