Affine Focal Set

In mathematics, and especially affine differential geometry, the affine focal set of a smooth submanifold M embedded in a smooth manifold N is the caustic generated by the affine normal lines. It can be realised as the bifurcation set of a certain family of functions. The bifurcation set is the set of parameter values of the family which yield functions with degenerate singularities. This is not the same as the bifurcation diagram in dynamical systems.

Let us assume that M is an n-dimensional smooth hypersurface in real (n+1)-space. We assume that M has no points where the second fundamental form is degenerate. We recall from the article affine differential geometry that there is a unique transverse vector field over M. This is the affine normal vector field, or the Blaschke normal field. A special (i.e. det = 1) affine transformation of real (n + 1)-space will carry the affine normal vector field of M onto the affine normal vector field of the image of M under the transformation.

Read more about Affine Focal Set:  Geometric Interpretation, Singularity Theory Approach, Singular Points, Local Structure

Famous quotes containing the word set:

    We set up a certain aim, and put ourselves of our own will into the power of a certain current. Once having done that, we find ourselves committed to usages and customs which we had not before fully known, but from which we cannot depart without giving up the end which we have chosen. But we have no right, therefore, to claim that we are under the yoke of necessity. We might as well say that the man whom we see struggling vainly in the current of Niagara could not have helped jumping in.
    Anna C. Brackett (1836–1911)