Affine Differential Geometry - The Conclusion

The Conclusion

It can be shown that there is, up to sign, a unique choice of transverse vector field ξ for which the two conditions that ∇ω ≡ 0 and ω ≡ ν are both satisfied. These two special transverse vector fields are called affine normal vector fields, or sometimes called Blaschke normal fields. From its dependence on volume forms for its definition we see that the affine normal vector field is invariant under volume preserving affine transformations. These transformations are given by SL(n+1,R) ⋉ Rn+1, where SL(n+1,R) denotes the special linear group of (n+1) × (n+1) matrices with real entries and determinant 1, and ⋉ denotes the semi-direct product. SL(n+1,R) ⋉ Rn+1 forms a Lie group.

Read more about this topic:  Affine Differential Geometry

Famous quotes containing the word conclusion:

    I’ve heard the wolves scuffle, and said: So this
    Is man; so what better conclusion is there
    The day will not follow night, and the heart
    Of man has a little dignity, but less patience
    Than a wolf’s....
    Allen Tate (1899–1979)

    Girls who put out are tramps. Girls who don’t are ladies. This is, however, a rather archaic usage of the word. Should one of you boys happen upon a girl who doesn’t put out, do not jump to the conclusion that you have found a lady. What you have probably found is a lesbian.
    Fran Lebowitz (b. 1951)