Real or Complex Reductive Lie Groups
Let G be a connected reductive (real or complex) Lie group. Let K be a maximal compact subgroup. A continuous representation (π, V) of G on a complex Hilbert space V is called admissible if π restricted to K is unitary and each irreducible unitary representation of K occurs in it with finite multiplicity. The prototypical example is that of an irreducible unitary representation of G.
An admissible representation π induces a -module which is easier to deal with as it is an algebraic object. Two admissible representations are said to be infinitesimally equivalent if their associated -modules are isomorphic. Though for general admissible representations, this notion is different than the usual equivalence, it is an important result that the two notions of equivalence agree for unitary (admissible) representations. Additionally, there is a notion of unitarity of -modules. This reduces the study of the equivalence classes of irreducible unitary representations of G to the study of infinitesimal equivalence classes of admissible representations and the determination of which of these classes are infinitesimally unitary. The problem of parameterizing the infinitesimal equivalence classes of admissible representations was fully solved by Robert Langlands and is called the Langlands classification.
Read more about this topic: Admissible Representation
Famous quotes containing the words real, complex, reductive, lie and/or groups:
“Individuality is founded in feeling; and the recesses of feeling, the darker, blinder strata of character, are the only places in the world in which we catch real fact in the making, and directly perceive how events happen, and how work is actually done.”
—William James (18421910)
“All propaganda or popularization involves a putting of the complex into the simple, but such a move is instantly deconstructive. For if the complex can be put into the simple, then it cannot be as complex as it seemed in the first place; and if the simple can be an adequate medium of such complexity, then it cannot after all be as simple as all that.”
—Terry Eagleton (b. 1943)
“In the haunted house no quarter is given: in that respect
Its very much business as usual. The reductive principle
Is no longer there, or isnt enforced as much as before.”
—John Ashbery (b. 1927)
“I will name you the degrees. The first, the Retort Courteous; the second, the Quip Modest; the third, the Reply Churlish; the fourth, the Reproof Valiant; the fifth, the Countercheck Quarrelsome; the sixth, the Lie with Circumstance; the seventh, the Lie Direct.”
—William Shakespeare (15641616)
“Instead of seeing society as a collection of clearly defined interest groups, society must be reconceptualized as a complex network of groups of interacting individuals whose membership and communication patterns are seldom confined to one such group alone.”
—Diana Crane (b. 1933)