Formal Definition
Let G be a Lie group with Lie algebra, and let P be a principal G-bundle over a smooth manifold M. Let
be the adjoint representation of G. The adjoint bundle of P is the associated bundle
The adjoint bundle is also commonly denoted by . Explicitly, elements of the adjoint bundle are equivalence classes of pairs for p ∈ P and x ∈ such that
for all g ∈ G. Since the structure group of the adjoint bundle consists of Lie algebra automorphisms, the fibers naturally carry a Lie algebra structure making the adjoint bundle into a bundle of Lie algebras over M.
Read more about this topic: Adjoint Bundle
Famous quotes containing the words formal and/or definition:
“This is no argument against teaching manners to the young. On the contrary, it is a fine old tradition that ought to be resurrected from its current mothballs and put to work...In fact, children are much more comfortable when they know the guide rules for handling the social amenities. Its no more fun for a child to be introduced to a strange adult and have no idea what to say or do than it is for a grownup to go to a formal dinner and have no idea what fork to use.”
—Leontine Young (20th century)
“Scientific method is the way to truth, but it affords, even in
principle, no unique definition of truth. Any so-called pragmatic
definition of truth is doomed to failure equally.”
—Willard Van Orman Quine (b. 1908)