Formal Definition
Let G be a Lie group with Lie algebra, and let P be a principal G-bundle over a smooth manifold M. Let
be the adjoint representation of G. The adjoint bundle of P is the associated bundle
The adjoint bundle is also commonly denoted by . Explicitly, elements of the adjoint bundle are equivalence classes of pairs for p ∈ P and x ∈ such that
for all g ∈ G. Since the structure group of the adjoint bundle consists of Lie algebra automorphisms, the fibers naturally carry a Lie algebra structure making the adjoint bundle into a bundle of Lie algebras over M.
Read more about this topic: Adjoint Bundle
Famous quotes containing the words formal and/or definition:
“The bed is now as public as the dinner table and governed by the same rules of formal confrontation.”
—Angela Carter (19401992)
“According to our social pyramid, all men who feel displaced racially, culturally, and/or because of economic hardships will turn on those whom they feel they can order and humiliate, usually women, children, and animalsjust as they have been ordered and humiliated by those privileged few who are in power. However, this definition does not explain why there are privileged men who behave this way toward women.”
—Ana Castillo (b. 1953)