Additive Inverse - General Definition

General Definition

The notation + is usually reserved for commutative binary operations, i.e. such that x + y = y + x, for all x, y . If such an operation admits an identity element o (such that x + o ( = o + x ) = x for all x), then this element is unique ( o′ = o′ + o = o ). For a given x , if there exists x′ such that x + x′ ( = x′ + x ) = o , then x′ is called an additive inverse of x.

If + is associative (( x + y ) + z = x + ( y + z ) for all x, y, z), then an additive inverse is unique

x″ = x″ + o = x″ + (x + x′) = (x″ + x) + x′ = o + x′ = x′

We often write xy as x + (−y).

For example, since addition of real numbers is associative, each real number has a unique additive inverse.

Read more about this topic:  Additive Inverse

Famous quotes containing the words general and/or definition:

    A general is just as good or just as bad as the troops under his command make him.
    Douglas MacArthur (1880–1964)

    Scientific method is the way to truth, but it affords, even in
    principle, no unique definition of truth. Any so-called pragmatic
    definition of truth is doomed to failure equally.
    Willard Van Orman Quine (b. 1908)