Definition
A category C is additive if
- it has a zero object
- every hom-set Hom(A, B) has an addition, endowing it with the structure of an Abelian group, and such that composition of morphisms is bilinear
- all finitary biproducts exist.
Note that a category is called preadditive if just the second holds, whereas it is called semiadditive if both the first and the third hold.
Also, since the empty biproduct is a zero object in the category, we may omit the first condition. If we do this, however, we need to presuppose that the category C has zero morphisms, or equivalently that C is enriched over the category of pointed sets.
Read more about this topic: Additive Category
Famous quotes containing the word definition:
“It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possessafter many mysterieswhat one loves.”
—François, Duc De La Rochefoucauld (16131680)
“The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.”
—Samuel Taylor Coleridge (17721834)
“Was man made stupid to see his own stupidity?
Is God by definition indifferent, beyond us all?
Is the eternal truth mans fighting soul
Wherein the Beast ravens in its own avidity?”
—Richard Eberhart (b. 1904)