Action Potential

In physiology, an action potential is a short-lasting event in which the electrical membrane potential of a cell rapidly rises and falls, following a consistent trajectory. Action potentials occur in several types of animal cells, called excitable cells, which include neurons, muscle cells, and endocrine cells, as well as in some plant cells. In neurons, they play a central role in cell-to-cell communication. In other types of cells, their main function is to activate intracellular processes. In muscle cells, for example, an action potential is the first step in the chain of events leading to contraction. In beta cells of the pancreas, they provoke release of insulin. Action potentials in neurons are also known as "nerve impulses" or "spikes", and the temporal sequence of action potentials generated by a neuron is called its "spike train". A neuron that emits an action potential is often said to "fire".

Action potentials are generated by special types of voltage-gated ion channels embedded in a cell's plasma membrane. These channels are shut when the membrane potential is near the resting potential of the cell, but they rapidly begin to open if the membrane potential increases to a precisely defined threshold value. When the channels open, they allow an inward flow of sodium ions, which changes the electrochemical gradient, which in turn produces a further rise in the membrane potential. This then causes more channels to open, producing a greater electric current, and so on. The process proceeds explosively until all of the available ion channels are open, resulting in a large upswing in the membrane potential. The rapid influx of sodium ions causes the polarity of the plasma membrane to reverse, and the ion channels then rapidly inactivate. As the sodium channels close, sodium ions can no longer enter the neuron, and they are actively transported out of the plasma membrane. Potassium channels are then activated, and there is an outward current of potassium ions, returning the electrochemical gradient to the resting state. After an action potential has occurred, there is a transient negative shift, called the afterhyperpolarization or refractory period, due to additional potassium currents. This is the mechanism that prevents an action potential from traveling back the way it just came.

In animal cells, there are two primary types of action potentials, one type generated by voltage-gated sodium channels, the other by voltage-gated calcium channels. Sodium-based action potentials usually last for under one millisecond, whereas calcium-based action potentials may last for 100 milliseconds or longer. In some types of neurons, slow calcium spikes provide the driving force for a long burst of rapidly emitted sodium spikes. In cardiac muscle cells, on the other hand, an initial fast sodium spike provides a "primer" to provoke the rapid onset of a calcium spike, which then produces muscle contraction.

Read more about Action Potential:  Biophysical Basis, Phases, Propagation, Taxonomic Distribution and Evolutionary Advantages, Experimental Methods, Neurotoxins, History, Quantitative Models

Famous quotes containing the words action and/or potential:

    Let him [the President] once win the admiration and confidence of the country, and no other single force can withstand him, no combination of forces will easily overpower him.... If he rightly interpret the national thought and boldly insist upon it, he is irresistible; and the country never feels the zest of action so much as when the President is of such insight and caliber.
    Woodrow Wilson (1856–1924)

    There is a potential 4-6 percentage point net gain for the President [George Bush] by replacing Dan Quayle on the ticket with someone of neutral stature.
    Mary Matalin, U.S. Republican political advisor, author, and James Carville b. 1946, U.S. Democratic political advisor, author. All’s Fair: Love, War, and Running for President, p. 205, Random House (1994)