Absolute Convergence - Background

Background

One may study the convergence of series whose terms an are elements of an arbitrary abelian topological group. The notion of absolute convergence requires more structure, namely a norm, which is a real-valued function on abelian group G (written additively, with identity element 0) such that:

  1. The norm of the identity element of G is zero:
  2. For every x in G, implies
  3. For every x in G,
  4. For every x, y in G,

In this case, the function induces on G the structure of a metric space (a type of topology). We can therefore consider G-valued series and define such a series to be absolutely convergent if

In particular, these statements apply using the norm |x| (absolute value) in the space of real numbers or complex numbers.

Read more about this topic:  Absolute Convergence

Famous quotes containing the word background:

    Pilate with his question “What is truth?” is gladly trotted out these days as an advocate of Christ, so as to arouse the suspicion that everything known and knowable is an illusion and to erect the cross upon that gruesome background of the impossibility of knowledge.
    Friedrich Nietzsche (1844–1900)

    They were more than hostile. In the first place, I was a south Georgian and I was looked upon as a fiscal conservative, and the Atlanta newspapers quite erroneously, because they didn’t know anything about me or my background here in Plains, decided that I was also a racial conservative.
    Jimmy Carter (James Earl Carter, Jr.)