Absolute Continuity of Functions
It may happen that a continuous function f is differentiable almost everywhere on, its derivative f ′ is Lebesgue integrable, and nevertheless the integral of f ′ differs from the increment of f. For example, this happens for the Cantor function, which means that this function is not absolutely continuous. Absolute continuity of functions is a smoothness property which is stricter than continuity and uniform continuity.
Read more about this topic: Absolute Continuity
Famous quotes containing the words absolute, continuity and/or functions:
“If a man needs an elaborate tombstone in order to remain in the memory of his country, it is clear that his living at all was an act of absolute superfluity.”
—Oscar Wilde (18541900)
“Continuous eloquence wearies.... Grandeur must be abandoned to be appreciated. Continuity in everything is unpleasant. Cold is agreeable, that we may get warm.”
—Blaise Pascal (16231662)
“One of the most highly valued functions of used parents these days is to be the villains of their childrens lives, the people the child blames for any shortcomings or disappointments. But if your identity comes from your parents failings, then you remain forever a member of the child generation, stuck and unable to move on to an adulthood in which you identify yourself in terms of what you do, not what has been done to you.”
—Frank Pittman (20th century)