Abiogenesis - Early Conditions

Early Conditions

The Hadean Earth is thought to have had a secondary atmosphere, formed through degassing of the rocks that accumulated from planetesimal impactors. At first it was thought by scientists like Harold Urey that the earth's atmosphere was made up of hydrides—methane, ammonia and water vapour, and that life began under such reducing conditions, conducive to the formation of organic molecules. However, it is now thought that the early atmosphere, based on today's volcanic evidence, would have contained 60% hydrogen, 20% oxygen (mostly in the form of water vapour), 10% carbon dioxide, 5 to 7% hydrogen sulfide, and smaller amounts of nitrogen, carbon monoxide, free hydrogen, methane and inert gases. As Earth lacked the gravity to hold any molecular hydrogen, this component of the atmosphere was rapidly lost during the Hadean period. Solution of the carbon dioxide in water is thought to have made the seas slightly acidic, with a pH of about 5.5.

Morse and MacKenzie have suggested that oceans may have appeared first in the Hadean eon, as soon as two hundred million years (200 Ma) after the Earth was formed, in a hot 100 °C (212 °F) reducing environment, and that the pH of about 5.8 rose rapidly towards neutral. This has been supported by Wilde who has pushed the date of the zircon crystals found in the metamorphosed quartzite of Mount Narryer in Western Australia, previously thought to be 4.1–4.2 Ga, to 4.404 Ga. This means that oceans and continental crust existed within 150 Ma of Earth's formation. Rosing et al., suggest that between 4.4 and 4.3 Ga, the Earth was a water world, with little if any continental crust, with an extremely turbulent atmosphere and a hydrosphere subject to high UV, from a T Tauri sun and cosmic radiation and continued bolide impact.

As a result, the Hadean environment was one highly hazardous to modern life. Frequent collisions with large objects, up to 500 kilometres (310 mi) in diameter, would have been sufficient to vaporise the ocean within a few months of impact, with hot steam mixed with rock vapour leading to high altitude clouds completely covering the planet. After a few months the height of these clouds would have begun to decrease but the cloud base would still have been elevated for about the next thousand years. After that, it would have begun to rain at low altitude. For another two thousand years rains would slowly have drawn down the height of the clouds, returning the oceans to their original depth only 3,000 years after the impact event.

Between 3.8 and 4.1 Ga, changes in the orbits of the gaseous giant planets may have caused a late heavy bombardment that pockmarked the Moon and the other inner planets (Mercury, Mars, and presumably Earth and Venus). This would likely have sterilized the planet, had life appeared before that time. Geologically the Hadean Earth would have been far more active than at any other time in its history. Studies of meteorites suggests that radioactive isotopes such as aluminium-26 with a half-life of 7.17×105 years, and potassium-40 with a half-life of 1.250×109 years, isotopes mainly produced in supernovae, were much more common, with the result that the earth was more than 96% more radioactive than it is today. Coupled with internal heating as a result of gravitational sorting between the core and the mantle generated a great deal of mantle convection, with the probable result that there would have been many more smaller very active tectonic plates, than in modern times.

By examining the time interval between such devastating environmental events, the time interval when life might first have come into existence can be found for different early environments. The study by Maher and Stevenson shows that if the deep marine hydrothermal setting provides a suitable site for the origin of life, abiogenesis could have happened as early as 4.0 to 4.2 Ga, whereas if it occurred at the surface of the Earth abiogenesis could only have occurred between 3.7 and 4.0 Ga.

Other research suggests a colder start to life. Work by Leslie Orgel and colleagues on the synthesis of purines has shown that freezing temperatures are advantageous, due to the concentrating effect for key precursors such as hydrogen cyanide. Research by Stanley Miller and colleagues suggested that while adenine and guanine require freezing conditions for synthesis, cytosine and uracil may require boiling temperatures. Research by the Miller group notes the formation of seven different amino acids and 11 types of nucleobases in ice when ammonia and cyanide were left in a freezer from 1972 to 1997. This article also describes research by Christof Biebricher showing the formation of RNA molecules 400 bases long under freezing conditions using an RNA template, a single-strand chain of RNA that guides the formation of a new strand of RNA. As that new RNA strand grows, it adheres to the template. The explanation given for the unusual speed of these reactions at such a low temperature is eutectic freezing. As an ice crystal forms, it stays pure: only molecules of water join the growing crystal, while impurities like salt or cyanide are excluded. These impurities become crowded in microscopic pockets of liquid within the ice, and this crowding causes the molecules to collide more often.

Evidence of the early appearance of life comes from the Isua supercrustal belt in Western Greenland and from similar formations in the nearby Akilia Island. Carbon entering into rock formations has a ratio of carbon-13 (13C) to carbon-12 (12C) of about −5.5 (in units of δ13C), where because of a preferential biotic uptake of 12C, biomass has a δ13C of between −20 and −30. These isotopic fingerprints are preserved in the sediments, and Mojzis has used this technique to suggest that life existed on the planet already by 3.85 billion years ago. Lazcano and Miller (1994) suggest that the rapidity of the evolution of life is dictated by the rate of recirculating water through mid-ocean submarine vents. Complete recirculation takes 10 million years, thus any organic compounds produced by then would be altered or destroyed by temperatures exceeding 300 °C (572 °F). They estimate that the development of a 100 kilobase genome of a DNA/protein primitive heterotroph into a 7000 gene filamentous cyanobacterium would have required only 7 Ma. Chemist Christian de Duve argues that the determination of chemistry means that "life has to emerge quickly ... Chemical reactions happen quickly or not at all; if any reaction takes a millennium to complete then the chances are all the reagents will simply dissipate or breakdown in the meantime, unless they are replenished by other faster reactions".

Read more about this topic:  Abiogenesis

Famous quotes containing the words early and/or conditions:

    The science, the art, the jurisprudence, the chief political and social theories, of the modern world have grown out of Greece and Rome—not by favor of, but in the teeth of, the fundamental teachings of early Christianity, to which science, art, and any serious occupation with the things of this world were alike despicable.
    Thomas Henry Huxley (1825–95)

    Under all conditions well-organized violence seems to him the shortest distance between two points.
    Leon Trotsky (1879–1940)