Zero-product Property - Application To Finding Roots of Polynomials

Application To Finding Roots of Polynomials

Suppose and are univariate polynomials with real coefficients, and is a real number such that . (Actually, we may allow the coefficients and to come from any integral domain.) By the zero-product property, it follows that either or . In other words, the roots of are precisely the roots of together with the roots of .

Thus, one can use factorization to find the roots of a polynomial. For example, the polynomial factorizes as ; hence, its roots are precisely 3, 1, and -2.

In general, suppose is an integral domain and is a monic univariate polynomial of degree with coefficients in . Suppose also that has distinct roots . It follows (but we do not prove here) that factorizes as . By the zero-product property, it follows that are the only roots of : any root of must be a root of for some . In particular, has at most distinct roots.

If however is not an integral domain, then the conclusion need not hold. For example, the cubic polynomial has six roots in (though it has only three roots in ).

Read more about this topic:  Zero-product Property

Famous quotes containing the words application to, application, finding and/or roots:

    If you would be a favourite of your king, address yourself to his weaknesses. An application to his reason will seldom prove very successful.
    Philip Dormer Stanhope, 4th Earl Chesterfield (1694–1773)

    Great abilites are not requisite for an Historian; for in historical composition, all the greatest powers of the human mind are quiescent. He has facts ready to his hand; so there is no exercise of invention. Imagination is not required in any degree; only about as much as is used in the lowest kinds of poetry. Some penetration, accuracy, and colouring, will fit a man for the task, if he can give the application which is necessary.
    Samuel Johnson (1709–1784)

    Love has its own instinct, finding the way to the heart, as the feeblest insect finds the way to its flower, with a will which nothing can dismay nor turn aside.
    HonorĂ© De Balzac (1799–1850)

    Now fades the lasts long streak of snow,
    Now burgeons every maze of quick
    About the flowering squares, and thick
    By ashen roots the violets blow.
    Alfred Tennyson (1809–1892)