Westinghouse Astronuclear Laboratory - WANL's Brief But Important Life Cycle

WANL's Brief But Important Life Cycle

WANL's origins can be traced to 1959 when a dozen engineers and technical specialists from Bettis set up a lab in nearby Whitehall, Pa., for the purpose of bidding on government research and development contracts. In 1960, the operation moved to a new site in Mt. Lebanon, Pa., and continued efforts to land a major development contract.

In 1961, NASA's Space Nuclear Propulsion Office, in conjunction with the Atomic Energy Commission, jointly awarded Aerojet General Corporation the prime contract for its Nuclear Engine for Rocket Vehicle Application NERVA Program, with a significant subcontract to WANL for development of the reactor itself. With the award, WANL selected the Large site as the base for operations and moved its personnel to the facility. Originally authorized in May 1959, WANL officially became a Westinghouse division on July 26, 1959 under the leadership of John Wistar Simpson. Cornell University physicist Sidney Krasik served as the first technical director and Frank Cotter was the first marketing director. Born in 1914, Simpson graduated from the United States Naval Academy in 1937 and earned an MS from from the University of Pittsburgh in 1941. Working in the switchgear division of Westinghouse's East Pittsburgh plant, Simpson helped develop the electric switchboards that could survive the extreme impacts experienced by naval vessels in the Pacific Theater during World War II. In 1946, he took a leave of absence to work at Oak Ridge National Laboratory to familiarize himself with atomic power. Upon his return, he became assistant manager in the engineering deportment of the Westinghouse Bettis Atomic Power Laboratory. He subsequently managed the construction of the Shippingport Atomic Power Station in 1954, the first commercial nuclear power plant in the United States. Promoted the next year to general manager of the Bettis Laboratory, he was elected a Westinghouse vice president in 1958 and by 1959 was eager to take on the new challenge of developing nuclear rocket engines to enable the exploration of the solar system.

Under the NERVA contract, the initial objective was to build a rocket engine that could deliver at least 825 seconds of specific impulse, at least 50,000 pounds of thrust, at least 10 minutes of continuous operation at full thrust, and have the ability to start up on its own with no external energy source. Liquid hydrogen served as the propellant that was supplied to the reactor core by turbopumps and also provided regenerative cooling. The cylindrical graphite core was surrounded by twelve rotating control drums with beryllium on one side to reflect neutrons and boral on the other side to absorb neutrons to control the rate of the nuclear reaction in the core. The core consisted of clusters of hexagonal graphite fuel elements containing pyrograpite-coated beads of uranium pellets coated with niobium carbide to prevent corrosion by exposure to the hydrogen propellant. Each fuel rod cluster was supported by an inconel tie rod. The fuel pellets were provided by Westinghouse Astrofuel's Cheswick plant in Allegheny Count. Fuel element corrosion tests were first conducted at Cheswick, and later at the Westinghouse Waltz Mill facility in Westmoreland County.

The first proof of concept test of an assembled Westinghouse-Aerojet rocket engine (NRX-A2) was conducted at Jackass Flats, Nevada on September 24, 1964 that provided six minutes of continuous operation. By April 23, 1965 the NRX-A3 provided sixteen minutes of operation and a three-minute restart and incorporated pulse cooling for the first time. In 1966 the NRX-A5/EST delivered two separate periods of full power totaling 30 minutes. On December, 1967 the NRX-A6 delivered sixty minutes of operation at full power and on June 11, 1969 the XE engine was started twenty times for a total of three hours and forty-eight minutes, eleven of whuch were at full power. By 1970, the proposed NERVA I concept vehicle that evolved out of this work was projected to be capable of delivering 1500 MW of power and 75,000 pounds of thrust. It also had a projected lifetime runtime of ten hours and could be started and stopped up to 60 times while delivering a specific impulse of 850 seconds. Its total weight was less that 15,000 pounds. Westinghouse and Aerojet were ready to begin construction of the first flight engines to be launched from the Kennedy Space Center in Florida beginning in 1973 when the program was canceled. The total amount spent on the project up to that time was $1.45 billion and more than 1,100 people were employed by the project. A NASA plan released in 1969 to land the first humans on Mars by 1981 using the NERVA engines was also quietly shelved at that time. Government funding for the NERVA program was ended in 1972 due to "lack of clear requirements for its capabilities." However, work on the project helped achieve major milestones in developing high-temperature/high-strength materials technology, which finds application in aerospace and a myriad of private-sector industries.

While other innovative projects (such as development of a fully implantable, self-contained, nuclear-powered artificial heart) were pursued into the mid 1970s, WANL ceased operations as a formal Westinghouse division shortly thereafter.

Read more about this topic:  Westinghouse Astronuclear Laboratory

Famous quotes containing the words important, life and/or cycle:

    Unexplained, obscure matters are regarded as more important than explained, clear ones.
    Friedrich Nietzsche (1844–1900)

    Where is the Life we have lost in living?
    Where is the wisdom we have lost in knowledge?
    Where is the knowledge we have lost in information?
    —T.S. (Thomas Stearns)

    Oh, life is a glorious cycle of song,
    A medley of extemporanea;
    And love is a thing that can never go wrong;
    And I am Marie of Roumania.
    Dorothy Parker (1893–1967)