Statement of The Weil Conjectures
Suppose that X is a non-singular n-dimensional projective algebraic variety over the field Fq with q elements. The zeta function ζ(X, s) of X is by definition
where Nm is the number of points of X defined over the degree m extension Fqm of Fq.
The Weil conjectures state:
- (Rationality) ζ(X, s) is a rational function of T = q−s. More precisely, ζ(X, s) can be written as a finite alternating product
- (Functional equation and Poincaré duality) The zeta function satisfies
- (Riemann hypothesis) |αi,j| = qi/2 for all 1 ≤ i ≤ 2n − 1 and all j. This implies that all zeros of Pk(T) lie on the "critical line" of complex numbers s with real part k/2.
- (Betti numbers) If X is a (good) "reduction mod p" of a non-singular projective variety Y defined over a number field embedded in the field of complex numbers, then the degree of Pi is the ith Betti number of the space of complex points of Y.
Read more about this topic: Weil Conjectures
Famous quotes containing the words statement of the, statement of, statement, weil and/or conjectures:
“It is commonplace that a problem stated is well on its way to solution, for statement of the nature of a problem signifies that the underlying quality is being transformed into determinate distinctions of terms and relations or has become an object of articulate thought.”
—John Dewey (18591952)
“Eroticism has its own moral justification because it says that pleasure is enough for me; it is a statement of the individuals sovereignty.”
—Mario Vargas Llosa (b. 1936)
“Children should know there are limits to family finances or they will confuse we cant afford that with they dont want me to have it. The first statement is a realistic and objective assessment of a situation, while the other carries an emotional message.”
—Jean Ross Peterson (20th century)
“The future is made of the same stuff as the present.”
—Simone Weil (19091943)
“After all, it is putting a very high price on ones conjectures to have a man roasted alive because of them.”
—Michel de Montaigne (15331592)