Weil Conjectures - Statement of The Weil Conjectures

Statement of The Weil Conjectures

Suppose that X is a non-singular n-dimensional projective algebraic variety over the field Fq with q elements. The zeta function ζ(X, s) of X is by definition

where Nm is the number of points of X defined over the degree m extension Fqm of Fq.

The Weil conjectures state:

  1. (Rationality) ζ(X, s) is a rational function of T = q−s. More precisely, ζ(X, s) can be written as a finite alternating product
    where each Pi(T) is an integral polynomial. Furthermore, P0(T) = 1 − T, P2n(T) = 1 − qnT, and for 1 ≤ i ≤ 2n − 1, Pi(T) factors over C as for some numbers αij.
  2. (Functional equation and Poincaré duality) The zeta function satisfies
    or equivalently
    where E is the Euler characteristic of X. In particular, for each i, the numbers α2n-i,1, α2n-i,2, … equal the numbers qni,1, qni,2, … in some order.
  3. (Riemann hypothesis) |αi,j| = qi/2 for all 1 ≤ i ≤ 2n − 1 and all j. This implies that all zeros of Pk(T) lie on the "critical line" of complex numbers s with real part k/2.
  4. (Betti numbers) If X is a (good) "reduction mod p" of a non-singular projective variety Y defined over a number field embedded in the field of complex numbers, then the degree of Pi is the ith Betti number of the space of complex points of Y.

Read more about this topic:  Weil Conjectures

Famous quotes containing the words statement of, statement, weil and/or conjectures:

    Eloquence must be grounded on the plainest narrative. Afterwards, it may warm itself until it exhales symbols of every kind and color, speaks only through the most poetic forms; but first and last, it must still be at bottom a biblical statement of fact.
    Ralph Waldo Emerson (1803–1882)

    No statement about God is simply, literally true. God is far more than can be measured, described, defined in ordinary language, or pinned down to any particular happening.
    David Jenkins (b. 1925)

    The needs of a human being are sacred. Their satisfaction cannot be subordinated either to reasons of state, or to any consideration of money, nationality, race, or color, or to the moral or other value attributed to the human being in question, or to any consideration whatsoever.
    —Simone Weil (1909–1943)

    After all, it is putting a very high price on one’s conjectures to have a man roasted alive because of them.
    Michel de Montaigne (1533–1592)