Weak Derivative - Definition

Definition

Let be a function in the Lebesgue space . We say that in is a weak derivative of if,

for all infinitely differentiable functions with . This definition is motivated by the integration technique of Integration by parts.

Generalizing to dimensions, if and are in the space of locally integrable functions for some open set, and if is a multi-index, we say that is the -weak derivative of if

for all, that is, for all infinitely differentiable functions with compact support in . If has a weak derivative, it is often written since weak derivatives are unique (at least, up to a set of measure zero, see below).

Read more about this topic:  Weak Derivative

Famous quotes containing the word definition:

    I’m beginning to think that the proper definition of “Man” is “an animal that writes letters.”
    Lewis Carroll [Charles Lutwidge Dodgson] (1832–1898)

    ... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lens—if we are unaware that women even have a history—we live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.
    Adrienne Rich (b. 1929)

    Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.
    Walter Pater (1839–1894)