In mathematics, a weak derivative is a generalization of the concept of the derivative of a function (strong derivative) for functions not assumed differentiable, but only integrable, i.e. to lie in the Lebesgue space . See distributions for an even more general definition.
Read more about Weak Derivative: Definition, Examples, Properties, Extensions
Famous quotes containing the words weak and/or derivative:
“When hearts have one mingled,
Love first leaves the well-built nest;
The weak one is singled
To endure what it once possessed.
O Love! who bewailest
The frailty of all things here,
Why choose you the frailest,
For your cradle, your home, and your bier.”
—Percy Bysshe Shelley (17921822)
“Poor John Field!I trust he does not read this, unless he will improve by it,thinking to live by some derivative old-country mode in this primitive new country.... With his horizon all his own, yet he a poor man, born to be poor, with his inherited Irish poverty or poor life, his Adams grandmother and boggy ways, not to rise in this world, he nor his posterity, till their wading webbed bog-trotting feet get talaria to their heels.”
—Henry David Thoreau (18171862)