War in The Age of Intelligent Machines - Wargaming and Game Theory

Wargaming and Game Theory

Manuel de Landa also shows how wargaming, invented in the early 19th century by Prussians under the name of Kriegsspiel, has been used since that time for modelization of future battles, in particular by the general staff, which may be considered the "institutionalized brain" of the armed forces — until their substitution by think tanks, the first one being the RAND Corporation, charged with the elaboration of science policy in the frame of the military-industrial complex. Frederick the Great was fascinated with automatons, as Foucault has shown, and with miniature wargames. 19th century wargaming modelization, which benefited from the cartography progress, was dependent on dices at the beginning to represent the effects of chaos. Eventually, these irrational conditions were taken out of the loop, as well as human will: current military wargames oppose computers, and not human beings. It was shown during the nuclear arms race that human beings refused in game modelizations to cross the threshold and press the red button, which convinced military programmers to take out human players.

De Landa distinguishes various "ages" of war machines (although they probably don't succeed each other in a simple way; Foucault and Deleuze likewise cast in doubt such historical linear succession); he also defines various "levels" of war machines (tactics, strategy and logistics, which necessarily involve politics).

Henceforth, describing the passage from the "clockwork paradigm" to the "motor paradigm", he quotes Michel Serres's studies to demonstrate how this new paradigm led to the creation of an "abstract motor" composed of three components: a reservoir (steam in the case of the steam engine), a form of exploitable difference (heat/cold difference) and a "diagram" or "program" for the exploitation of (thermal) differences. Michel Serres thus mentioned Darwin, Marx and Freud as examples in the area of scientific discourse:

reservoirs of population, of capital or of unconscious desires, put to work by the use of differences of fitness, class or sex, each following a procedure directing the circulation of naturally selected species, or commodities and labor, or symptoms and fantasies... (p.141)

Thus, Napoleon's armies, born from the 1789 French Revolution, marked a new threshold of the machinic phylum, or singularities or bifurcation: emergent properties are displayed in this "evolution" from the "clockwork paradigm" to the "motor paradigm". This evolution is not merely technological; it is not so much the invention of the steam engine itself — the first type of motor — that determines this "evolution". Indeed, the first steam engine was invented through tinkering, and can thus not be said to be the consequences of a "paradigm shift" as Thomas Kuhn would conceive it. There is no necessary preeminence of science over technology (nor the reverse). Manuel de Landa thus explains that the "abstract motor" is more important than the "concrete motor" itself, taking as his example the dazzling victories during the Napoleonic Wars:

Napoleon himself did not incorporate the motor as a technical object into his war machine (as mentioned, he explicitly rejected the use of steamboats), but the abstract motor did affect the mode of assemblage of the Napoleonic armies: "motorized" armies were the first to make use of a reservoir of loyal human bodies, to insert these bodies into a flexible calculus (nonlinear tactics), and to exploit the friend/foe difference to take warfare from clockwork dynastic duels to massive confrontations between nations. (p.141)

Thus, Napoleon's true innovation is not in the implementation of the motor invention — he rejected the use of steamboats — but his use of the pool of energy formed by patriotism, itself fuelled by the French Revolution. This high morale made conscription possible; it also allowed more local initiative by and decentralization of the army, since French commanders didn't dread, as did their counterparts, endless cases of desertions if they allowed small groups of soldiers to take over specific missions.

De Landa also notes how von Neumann was hired by the RAND Corporation to improve war exercises, which he did by devising game theory, which helped The Pentagon theorize nuclear strategy. In particular, game theory was used to represent the Cold War dualism conflict as an instantiation of the Prisoner's dilemma. Since the zero-sum fallacy wasn't yet theorized, this led to systemic bias in favor of conflict against cooperative games, according to de Landa. Thus, the massive retaliation nuclear strategy was chosen, although nuclear disarmament would have been, in a more realistic win-win game, the best solution. The Turing machines were also perfect "abstract machines" which would be implemented in concrete machines only later.

Read more about this topic:  War In The Age Of Intelligent Machines

Famous quotes containing the words game and/or theory:

    The notion that the public accepts or rejects anything in modern art ... is merely romantic fiction.... The game is completed and the trophies distributed long before the public knows what has happened.
    Tom Wolfe (b. 1931)

    It makes no sense to say what the objects of a theory are,
    beyond saying how to interpret or reinterpret that theory in another.
    Willard Van Orman Quine (b. 1908)