In geometry, **Villarceau circles** ( /viːlɑrˈsoʊ/) are a pair of circles produced by cutting a torus diagonally through the center at the correct angle. Given an arbitrary point on a torus, four circles can be drawn through it. One is in the plane (containing the point) parallel to the equatorial plane of the torus. Another is perpendicular to it. The other two are Villarceau circles. They are named after the French astronomer and mathematician Yvon Villarceau (1813–1883). Mannheim (1903) showed that a the Villarceau circles meet all of the parallel circular cross-sections of the torus at the same angle, a result that he said a Colonel Schoelcher had presented at a congress in 1891.

Read more about Villarceau Circles: Example, Existence and Equations, Filling Space

### Other articles related to "villarceau circles, circle, circles":

**Villarceau Circles**

... Another special case is the

**Villarceau circles**, in which the intersection is a

**circle**despite the lack of any of the obvious sorts of symmetry that ...

**Villarceau Circles**- Filling Space

... the Hopf fibration of the 3-sphere, S3, over the ordinary sphere, S2, which has

**circles**, S1, as fibers ... the 3-sphere is mapped to Euclidean 3-space by stereographic projection, the inverse image of a

**circle**of latitude on S2 under the fiber map is a torus, and ... One of the unusual facts about the

**circles**is that each links through all the others, not just in its own torus but in the collection filling all of space Berger (1987) has a discussion and drawing ...

### Famous quotes containing the word circles:

“By the power elite, we refer to those political, economic, and military *circles* which as an intricate set of overlapping cliques share decisions having at least national consequences. In so far as national events are decided, the power elite are those who decide them.”

—C. Wright Mills (1916–1962)