Relation With The Exponential Integral of Imaginary Argument
The function
is called the exponential integral. It is closely related to Si and Ci:
As each involved function is analytic except the cut at negative values of the argument, the area of validity of the relation should be extended to . (Out of this range, additional terms which are integer factors of appear in the expression).
Cases of imaginary argument of the generalized integro-exponential function are
which is the real part of
Similarly
Read more about this topic: Trigonometric Integral
Famous quotes containing the words relation, integral, imaginary and/or argument:
“The adolescent does not develop her identity and individuality by moving outside her family. She is not triggered by some magic unconscious dynamic whereby she rejects her family in favour of her peers or of a larger society.... She continues to develop in relation to her parents. Her mother continues to have more influence over her than either her father or her friends.”
—Terri Apter (20th century)
“Painting myself for others, I have painted my inward self with colors clearer than my original ones. I have no more made my book than my book has made mea book consubstantial with its author, concerned with my own self, an integral part of my life; not concerned with some third-hand, extraneous purpose, like all other books.”
—Michel de Montaigne (15331592)
“Dont let us make imaginary evils, when you know we have so many real ones to encounter.”
—Oliver Goldsmith (17281774)
“Argument is conclusive ... but ... it does not remove doubt, so that the mind may rest in the sure knowledge of the truth, unless it finds it by the method of experiment.... For if any man who never saw fire proved by satisfactory arguments that fire burns ... his hearers mind would never be satisfied, nor would he avoid the fire until he put his hand in it ... that he might learn by experiment what argument taught.”
—Roger Bacon (c. 12141294)



![\int_1^\infty e^{iax}\frac{\ln x}{x^2}dx
=1+ia[-\frac{\pi^2}{24}+\gamma\left(\frac{\gamma}{2}+\ln a-1\right)+\frac{\ln^2 a}{2}-\ln a+1
-\frac{i\pi}{2}(\gamma+\ln a-1)]+\sum_{n\ge 1}\frac{(ia)^{n+1}}{(n+1)!n^2}.](http://upload.wikimedia.org/math/a/e/d/aeded28afed65b67b55686229ace42ee.png)