Relation With The Exponential Integral of Imaginary Argument
The function
is called the exponential integral. It is closely related to Si and Ci:
As each involved function is analytic except the cut at negative values of the argument, the area of validity of the relation should be extended to . (Out of this range, additional terms which are integer factors of appear in the expression).
Cases of imaginary argument of the generalized integro-exponential function are
which is the real part of
Similarly
Read more about this topic: Trigonometric Integral
Famous quotes containing the words relation with, relation, integral, imaginary and/or argument:
“There is undoubtedly something religious about it: everyone believes that they are special, that they are chosen, that they have a special relation with fate. Here is the test: you turn over card after card to see in which way that is true. If you can defy the odds, you may be saved. And when you are cleaned out, the last penny gone, you are enlightened at last, free perhaps, exhilarated like an ascetic by the falling away of the material world.”
—Andrei Codrescu (b. 1947)
“We shall never resolve the enigma of the relation between the negative foundations of greatness and that greatness itself.”
—Jean Baudrillard (b. 1929)
“An island always pleases my imagination, even the smallest, as a small continent and integral portion of the globe. I have a fancy for building my hut on one. Even a bare, grassy isle, which I can see entirely over at a glance, has some undefined and mysterious charm for me.”
—Henry David Thoreau (18171862)
“Its imaginary value will increase with the years, and if he [his grandson-in-law] lives to my age, or another half century, he may see it carried in the procession of our nations birthday, as the relics of the saints are in those of the church.”
—Thomas Jefferson (17431826)
“The argument is over.”
—St. Augustine (354430)



![\int_1^\infty e^{iax}\frac{\ln x}{x^2}dx
=1+ia[-\frac{\pi^2}{24}+\gamma\left(\frac{\gamma}{2}+\ln a-1\right)+\frac{\ln^2 a}{2}-\ln a+1
-\frac{i\pi}{2}(\gamma+\ln a-1)]+\sum_{n\ge 1}\frac{(ia)^{n+1}}{(n+1)!n^2}.](http://upload.wikimedia.org/math/a/e/d/aeded28afed65b67b55686229ace42ee.png)