Relation With The Exponential Integral of Imaginary Argument
The function
is called the exponential integral. It is closely related to Si and Ci:
As each involved function is analytic except the cut at negative values of the argument, the area of validity of the relation should be extended to . (Out of this range, additional terms which are integer factors of appear in the expression).
Cases of imaginary argument of the generalized integro-exponential function are
which is the real part of
Similarly
Read more about this topic: Trigonometric Integral
Famous quotes containing the words relation with, relation, integral, imaginary and/or argument:
“To criticize is to appreciate, to appropriate, to take intellectual possession, to establish in fine a relation with the criticized thing and to make it ones own.”
—Henry James (18431916)
“There is undoubtedly something religious about it: everyone believes that they are special, that they are chosen, that they have a special relation with fate. Here is the test: you turn over card after card to see in which way that is true. If you can defy the odds, you may be saved. And when you are cleaned out, the last penny gone, you are enlightened at last, free perhaps, exhilarated like an ascetic by the falling away of the material world.”
—Andrei Codrescu (b. 1947)
“Self-centeredness is a natural outgrowth of one of the toddlers major concerns: What is me and what is mine...? This is why most toddlers are incapable of sharing ... to a toddler, whats his is what he can get his hands on.... When something is taken away from him, he feels as though a piece of himan integral pieceis being torn from him.”
—Lawrence Balter (20th century)
“Its imaginary value will increase with the years, and if he [his grandson-in-law] lives to my age, or another half century, he may see it carried in the procession of our nations birthday, as the relics of the saints are in those of the church.”
—Thomas Jefferson (17431826)
“Our argument ... will result, not upon logic by itselfthough without logic we should never have got to this pointbut upon the fortunate contingent fact that people who would take this logically possible view, after they had really imagined themselves in the other mans position, are extremely rare.”
—Richard M. Hare (b. 1919)



![\int_1^\infty e^{iax}\frac{\ln x}{x^2}dx
=1+ia[-\frac{\pi^2}{24}+\gamma\left(\frac{\gamma}{2}+\ln a-1\right)+\frac{\ln^2 a}{2}-\ln a+1
-\frac{i\pi}{2}(\gamma+\ln a-1)]+\sum_{n\ge 1}\frac{(ia)^{n+1}}{(n+1)!n^2}.](http://upload.wikimedia.org/math/a/e/d/aeded28afed65b67b55686229ace42ee.png)