Transitive Reduction - in Graphs With Cycles

In Graphs With Cycles

In a finite graph that may have cycles, the transitive reduction is not uniquely defined: there may be more than one graph on the same vertex set that has a minimal number of edges and has the same reachability relation as the given graph. Additionally, it may be the case that none of these minimal graphs is a subgraph of the given graph. Nevertheless, it is straightforward to characterize the minimal graphs with the same reachability relation as the given graph G. If G is an arbitrary directed graph, and H is a graph with the minimum possible number of edges having the same reachability relation as G, then H consists of

  • A directed cycle for each strongly connected component of G, connecting together the vertices in this component
  • An edge xy for each edge XY of the transitive reduction of the condensation of G, where X and Y are two strongly connected components of G that are connected by an edge in the condensation, x is any vertex in component X, and y is any vertex in component Y. The condensation of G is a directed acyclic graph that has a vertex for every strongly connected component of G and an edge for every two components that are connected by an edge in G. In particular, because it is acyclic, its transitive reduction can be defined as in the previous section.

The total number of edges in this type of transitive reduction is then equal to the number of edges in the transitive reduction of the condensation, plus the number of vertices in nontrivial strongly connected components (components with more than one vertex).

The edges of the transitive reduction that correspond to condensation edges can always be chosen to be a subgraph of the given graph G. However, the cycle within each strongly connected component can only be chosen to be a subgraph of G if that component has a Hamiltonian cycle, something that is not always true and is difficult to check. Because of this difficulty, it is NP-hard to find the smallest subgraph of a given graph G with the same reachability (its minimum equivalent graph).

Read more about this topic:  Transitive Reduction

Famous quotes containing the word cycles:

    The stars which shone over Babylon and the stable in Bethlehem still shine as brightly over the Empire State Building and your front yard today. They perform their cycles with the same mathematical precision, and they will continue to affect each thing on earth, including man, as long as the earth exists.
    Linda Goodman (b. 1929)