In mathematics, topological degree theory is a generalization of the winding number of a curve in the complex plane. It can be used to estimate the number of solutions of an equation, and is closely connected to fixed-point theory. When one solution of an equation is easily found, degree theory can often be used to prove existence of a second, nontrivial, solution. There are different types of degree for different types of maps: e.g. for maps between Banach spaces there is the Brouwer degree in Rn, the Leray-Schauder degree for compact mappings in normed spaces, the coincidence degree and various other types. There is also a degree for continuous maps between manifolds.
Topological degree theory has applications in complementarity problems, differential equations, differential inclusions and dynamical systems.
Read more about Topological Degree Theory: Further Reading
Famous quotes containing the words degree and/or theory:
“But in every constitution some large degree of animal vigor is necessary as material foundation for the higher qualities of the art.”
—Ralph Waldo Emerson (18031882)
“Thus the theory of description matters most.
It is the theory of the word for those
For whom the word is the making of the world,
The buzzing world and lisping firmament.”
—Wallace Stevens (18791955)