Topological data analysis (TDA) is a new area of study aimed at having applications in areas such as data mining and computer vision. The main problems are:
- how one infers high-dimensional structure from low-dimensional representations; and
- how one assembles discrete points into global structure.
The human brain can easily extract global structure from representations in a strictly lower dimension, i.e. we infer a 3D environment from a 2D image from each eye. The inference of global structure also occurs when converting discrete data into continuous images, e.g. dot-matrix printers and televisions communicate images via arrays of discrete points.
The main method used by topological data analysis is:
- Replace a set of data points with a family of simplicial complexes, indexed by a proximity parameter.
- Analyse these topological complexes via algebraic topology — specifically, via the theory of persistent homology.
- Encode the persistent homology of a data set in the form of a parameterized version of a Betti number which is called a barcode.
Read more about Topological Data Analysis: Point Cloud Data, Background, Combinatorial Representations, Topological Invariants, Multiscale Invariants, See Also
Famous quotes containing the word data:
“Mental health data from the 1950s on middle-aged women showed them to be a particularly distressed group, vulnerable to depression and feelings of uselessness. This isnt surprising. If society tells you that your main role is to be attractive to men and you are getting crows feet, and to be a mother to children and yours are leaving home, no wonder you are distressed.”
—Grace Baruch (20th century)