Tight Binding - Table of Interatomic Matrix Elements

Table of Interatomic Matrix Elements

In 1954 J.C. Slater and F.G. Koster published, mainly for the calculation of transition metal d-bands, a table of interatomic matrix elements

which, with a little patience and effort, can also be derived from the cubic harmonic orbitals straightforwardly. The table expresses the matrix elements as functions of LCAO two-centre bond integrals between two cubic harmonic orbitals, i and j, on adjacent atoms. The bond integrals are for example the, and for sigma, pi and delta bonds.

The interatomic vector is expressed as

where d is the distance between the atoms and l, m and n are the direction cosines to the neighboring atom.

E_{x,x^2-y^2} = \frac{\sqrt{3}}{2} l (l^2 - m^2) V_{pd\sigma} +
l (1 - l^2 + m^2) V_{pd\pi}
E_{y,x^2-y^2} = \frac{\sqrt{3}}{2} m(l^2 - m^2) V_{pd\sigma} -
m (1 + l^2 - m ^2) V_{pd\pi}
E_{z,3z^2-r^2} = n V_{pd\sigma} +
\sqrt{3} n (l^2 + m^2) V_{pd\pi}
E_{xy,xy} = 3 l^2 m^2 V_{dd\sigma} + (l^2 + m^2 - 4 l^2 m^2) V_{dd\pi} +
(n^2 + l^2 m^2) V_{dd\delta}
E_{xy,yz} = 3 l m^2 nV_{dd\sigma} + l n (1 - 4 m^2) V_{dd\pi} +
l n (m^2 - 1) V_{dd\delta}
E_{xy,zx} = 3 l^2 m n V_{dd\sigma} + m n (1 - 4 l^2) V_{dd\pi} +
m n (l^2 - 1) V_{dd\delta}
E_{xy,x^2-y^2} = \frac{3}{2} l m (l^2 - m^2) V_{dd\sigma} +
2 l m (m^2 - l^2) V_{dd\pi} + l m (l^2 - m^2) / 2 V_{dd\delta}
E_{yz,x^2-y^2} = \frac{3}{2} m n (l^2 - m^2) V_{dd\sigma} -
m n V_{dd\pi} + m n V_{dd\delta}
E_{zx,x^2-y^2} = \frac{3}{2} n l (l^2 - m^2) V_{dd\sigma} +
n l V_{dd\pi} - n l V_{dd\delta}
E_{xy,3z^2-r^2} = \sqrt{3} \left[ l m (n^2 - (l^2 + m^2) / 2) V_{dd\sigma} -
2 l m n^2 V_{dd\pi} + l m (1 + n^2) / 2 V_{dd\delta} \right]
E_{yz,3z^2-r^2} = \sqrt{3} \left[ m n (n^2 - (l^2 + m^2) / 2) V_{dd\sigma} +
m n (l^2 + m^2 - n^2) V_{dd\pi} - m n (l^2 + m^2) / 2 V_{dd\delta} \right]
E_{zx,3z^2-r^2} = \sqrt{3} \left[ l n (n^2 - (l^2 + m^2) / 2) V_{dd\sigma} +
l n (l^2 + m^2 - n^2) V_{dd\pi} - l n (l^2 + m^2) / 2 V_{dd\delta} \right]
E_{x^2-y^2,x^2-y^2} = \frac{3}{4} (l^2 - m^2)^2 V_{dd\sigma} + V_{dd\pi} + V_{dd\delta}
E_{x^2-y^2,3z^2-r^2} = \sqrt{3} \left[
(l^2 - m^2) V_{dd\sigma} / 2 + n^2 (m^2 - l^2) V_{dd\pi} +
(1 + n^2)(l^2 - m^2) / 4 V_{dd\delta}\right]
E_{3z^2-r^2,3z^2-r^2} = ^2 V_{dd\sigma} +
3 n^2 (l^2 + m^2) V_{dd\pi} + \frac{3}{4} (l^2 + m^2)^2 V_{dd\delta}

Not all interatomic matrix elements are listed explicitly. Matrix elements that are not listed in this table can be constructed by permutation of indices and cosine directions of other matrix elements in the table.

Read more about this topic:  Tight Binding

Famous quotes containing the words table of, table, matrix and/or elements:

    Remember thee?
    Ay, thou poor ghost, whiles memory holds a seat
    In this distracted globe. Remember thee?
    Yea, from the table of my memory
    I’ll wipe away all trivial fond records,
    All saws of books, all forms, all pressures past
    That youth and observation copied there,
    And thy commandment all alone shall live
    Within the book and volume of my brain,
    William Shakespeare (1564–1616)

    The table kills more people than war does.
    Catalan proverb, quoted in Colman Andrews, Catalan Cuisine.

    In all cultures, the family imprints its members with selfhood. Human experience of identity has two elements; a sense of belonging and a sense of being separate. The laboratory in which these ingredients are mixed and dispensed is the family, the matrix of identity.
    Salvador Minuchin (20th century)

    But all subsists by elemental strife;
    And Passions are the elements of Life.
    Alexander Pope (1688–1744)