Thiamine

Thiamine or thiamin or vitamin B1 ( /ˈθaɪ.əmɨn/ THY-ə-min), named as the "thio-vitamine" ("sulfur-containing vitamin") is a water-soluble vitamin of the B complex. First named aneurin for the detrimental neurological effects if not present in the diet, it was eventually assigned the generic descriptor name vitamin B1. Its phosphate derivatives are involved in many cellular processes. The best-characterized form is thiamine pyrophosphate (TPP), a coenzyme in the catabolism of sugars and amino acids. Thiamine is used in the biosynthesis of the neurotransmitter acetylcholine and gamma-aminobutyric acid (GABA). In yeast, TPP is also required in the first step of alcoholic fermentation.

All living organisms use thiamine in their biochemistry, but it is synthesized only in bacteria, fungi, and plants. Animals must obtain it from their diet, and thus, for them, it is an essential nutrient. Insufficient intake in birds produces a characteristic polyneuritis. In mammals, deficiency results in Korsakoff's syndrome, optic neuropathy, and a disease called beriberi that affects the peripheral nervous system (polyneuritis) and/or the cardiovascular system. Thiamine deficiency has a potentially fatal outcome if it remains untreated. In less severe cases, nonspecific signs include malaise, weight loss, irritability and confusion.

There is still much research devoted to elucidating the exact mechanisms by which thiamine deficiency leads to the specific symptoms observed (see below). New thiamine phosphate derivatives have recently been discovered, emphasizing the complexity of thiamine metabolism.

Thiamine derivatives with improved pharmacokinetics have been discovered and are to be considered more effective in alleviating the symptoms of thiamine deficiency and other thiamine-related conditions such as impaired glucose metabolism in diabetes. These compounds include allithiamine, prosultiamine, fursultiamine, benfotiamine, and sulbutiamine, among others.

Read more about Thiamine:  Chemical Properties, Biosynthesis, Thiamine Phosphate Derivatives and Function, Deficiency, Genetic Diseases, History, Research