Theta Function - Integral Representations

Integral Representations

The Jacobi theta functions have the following integral representations:

\vartheta_{00} (z; \tau) = -i
\int_{i - \infty}^{i + \infty} {e^{i \pi \tau u^2}
\cos (2 u z + \pi u) \over \sin (\pi u)} du
\vartheta_{01} (z; \tau) = -i
\int_{i - \infty}^{i + \infty} {e^{i \pi \tau u^2}
\cos (2 u z) \over \sin (\pi u)} du.
\vartheta_{10} (z; \tau) = -i e^{iz + i \pi \tau / 4}
\int_{i - \infty}^{i + \infty} {e^{i \pi \tau u^2}
\cos (2 u z + \pi u + \pi \tau u) \over \sin (\pi u)} du
\vartheta_{11} (z; \tau) = e^{iz + i \pi \tau / 4}
\int_{i - \infty}^{i + \infty} {e^{i \pi \tau u^2}
\cos (2 u z + \pi \tau u) \over \sin (\pi u)} du

Read more about this topic:  Theta Function

Famous quotes containing the word integral:

    Make the most of your regrets; never smother your sorrow, but tend and cherish it till it come to have a separate and integral interest. To regret deeply is to live afresh.
    Henry David Thoreau (1817–1862)