Theoretical Chemistry - Closely Related Disciplines

Closely Related Disciplines

Historically, the major field of application of theoretical chemistry has been in the following fields of research:

  • Atomic physics: The discipline dealing with electrons and atomic nuclei.
  • Molecular physics: The discipline of the electrons surrounding the molecular nuclei and of movement of the nuclei. This term usually refers to the study of molecules made of a few atoms in the gas phase. But some consider that molecular physics is also the study of bulk properties of chemicals in terms of molecules.
  • Physical chemistry and chemical physics: Chemistry investigated via physical methods like laser techniques, scanning tunneling microscope, etc. The formal distinction between both fields is that physical chemistry is a branch of chemistry while chemical physics is a branch of physics. In practice this distinction is quite vague.
  • Many-body theory: The discipline studying the effects which appear in systems with large number of constituents. It is based on quantum physics – mostly second quantization formalism – and quantum electrodynamics.

Hence, the theoretical chemistry discipline is sometimes seen as a branch of those fields of research. Nevertheless, more recently, with the rise of the density functional theory and other methods like molecular mechanics, the range of application has been extended to chemical systems which are relevant to other fields of chemistry and physics like biochemistry, condensed matter physics, nanotechnology or molecular biology.

Read more about this topic:  Theoretical Chemistry

Famous quotes containing the words closely and/or related:

    Out of all those centuries the Greeks can count seven sages at the most, and if anyone looks at them more closely I swear he’ll not find so much as a half-wise man or even a third of a wise man among them.
    Desiderius Erasmus (c. 1466–1536)

    The question of place and climate is most closely related to the question of nutrition. Nobody is free to live everywhere; and whoever has to solve great problems that challenge all his strength actually has a very restricted choice in this matter. The influence of climate on our metabolism, its retardation, its acceleration, goes so far that a mistaken choice of place and climate can not only estrange a man from his task but can actually keep it from him: he never gets to see it.
    Friedrich Nietzsche (1844–1900)