Integrating Astronomy and Chemistry
Astrochemistry, the overlap of the disciplines of astronomy and chemistry, is the study of the abundance and reactions of chemical elements and molecules in space, and their interaction with radiation. The formation, atomic and chemical composition, evolution and fate of molecular gas clouds, is of special interest because it is from these clouds that solar systems form.
Infrared astronomy, for example, has revealed that the interstellar medium contains a suite of complex gas-phase carbon compounds called aromatic hydrocarbons, often abbreviated (PAHs or PACs). These molecules composed primarily of fused rings of carbon (either neutral or in an ionized state) are said to be the most common class of carbon compound in the galaxy. They are also the most common class of carbon molecule in meteorites and in cometary and asteroidal dust (cosmic dust). These compounds, as well as the amino acids, nucleobases, and many other compounds in meteorites, carry deuterium and isotopes of carbon, nitrogen, and oxygen that are very rare on earth, attesting to their extraterrestrial origin. The PAHs are thought to form in hot circumstellar environments (around dying carbon rich red giant stars).
The sparseness of interstellar and interplanetary space results in some unusual chemistry, since symmetry-forbidden reactions cannot occur except on the longest of timescales. For this reason, molecules and molecular ions which are unstable on Earth can be highly abundant in space, for example the H3+ ion. Astrochemistry overlaps with astrophysics and nuclear physics in characterizing the nuclear reactions which occur in stars, the consequences for stellar evolution, as well as stellar 'generations'. Indeed, the nuclear reactions in stars produce every naturally occurring chemical element. As the stellar 'generations' advance, the mass of the newly formed elements increases. A first-generation star uses elemental hydrogen (H) as a fuel source and produces helium (He). Hydrogen is the most abundant element, and it is the basic building block for all other elements as its nucleus has only one proton. Gravitational pull toward the center of a star creates massive amounts of heat and pressure, which cause nuclear fusion. Through this process of merging nuclear mass, heavier elements are formed. Lithium, carbon, nitrogen and oxygen are examples of elements that form in stellar fusion. After many stellar generations, very heavy elements are formed (e.g. iron and lead).
Read more about this topic: Theoretical Astronomy
Famous quotes containing the words astronomy and/or chemistry:
“Awareness of the stars and their light pervades the Koran, which reflects the brightness of the heavenly bodies in many verses. The blossoming of mathematics and astronomy was a natural consequence of this awareness. Understanding the cosmos and the movements of the stars means understanding the marvels created by Allah. There would be no persecuted Galileo in Islam, because Islam, unlike Christianity, did not force people to believe in a fixed heaven.”
—Fatima Mernissi, Moroccan sociologist. Islam and Democracy, ch. 9, Addison-Wesley Publishing Co. (Trans. 1992)
“For me chemistry represented an indefinite cloud of future potentialities which enveloped my life to come in black volutes torn by fiery flashes, like those which had hidden Mount Sinai. Like Moses, from that cloud I expected my law, the principle of order in me, around me, and in the world.... I would watch the buds swell in spring, the mica glint in the granite, my own hands, and I would say to myself: I will understand this, too, I will understand everything.”
—Primo Levi (19191987)