Theoretical Astronomy

Theoretical Astronomy

Based on strict dictionary definitions, "astronomy" refers to "the study of objects and matter outside the Earth's atmosphere and of their physical and chemical properties" In some cases, as in the introduction of the introductory textbook The Physical Universe by Frank Shu, "astronomy" may be used to describe the qualitative study of the subject. Astronomy focuses on celestial objects, space, and the physical universe as a whole. Observations of the Sun, Moon, stars, and planets have formed the basis of timekeeping and navigation.

Astronomy is a branch of science, but unlike other sciences, which have Earth-based laboratories in which controlled experiments are performed, astronomy has its labs located in the heavens far beyond the reach, let alone control, of the terrestrial observer. "So how can one be sure that what one sees out there is subject to the same rules and disciplines of science that govern the local laboratory experiments of physics and chemistry?" "The most incomprehensible thing about the universe is that it is comprehensible." – Albert Einstein.

Ptolemy's Almagest, although a brilliant treatise on theoretical astronomy combined with a practical handbook for computation, nevertheless includes many compromises to reconcile discordant observations. Theoretical astronomy is usually assumed to have begun with Johannes Kepler (1571–1630), and Kepler's laws. It is co-equal with observation. The general history of astronomy deals with the history of the descriptive and theoretical astronomy of the solar system, from the late sixteenth century to the end of the nineteenth century. The major categories of works on the history of modern astronomy include general histories, national and institutional histories, instrumentation, descriptive astronomy, theoretical astronomy, positional astronomy, and astrophysics. Astronomy was early to adopt computational techniques to model stellar and galactic formation and celestial mechanics. From the point of view of theoretical astronomy, not only must the mathematical expression be reasonably accurate but it should preferably exist in a form which is amenable to further mathematical analysis when used in specific problems. Most of theoretical astronomy uses Newtonian theory of gravitation, considering that the effects of general relativity are weak for most celestial objects. The obvious fact is that theoretical astronomy cannot (and does not try) to predict the position, size and temperature of every star in the heavens. Theoretical astronomy by and large has concentrated upon analyzing the apparently complex but periodic motions of celestial objects.

Read more about Theoretical Astronomy:  Integrating Astronomy and Physics, Integrating Astronomy and Chemistry, Tools of Theoretical Astronomy, Topics of Theoretical Astronomy, Astronomical Models, Leading Topics in Theoretical Astronomy, Theoretical Astrophysics, Theoretical Astrochemistry, Theoretical Chemical Astronomy, Theoretical Physical Astronomy, Theory of Astronomical Time Keeping

Famous quotes containing the words theoretical and/or astronomy:

    Post-structuralism is among other things a kind of theoretical hangover from the failed uprising of ‘68Ma way of keeping the revolution warm at the level of language, blending the euphoric libertarianism of that moment with the stoical melancholia of its aftermath.
    Terry Eagleton (b. 1943)

    Awareness of the stars and their light pervades the Koran, which reflects the brightness of the heavenly bodies in many verses. The blossoming of mathematics and astronomy was a natural consequence of this awareness. Understanding the cosmos and the movements of the stars means understanding the marvels created by Allah. There would be no persecuted Galileo in Islam, because Islam, unlike Christianity, did not force people to believe in a “fixed” heaven.
    Fatima Mernissi, Moroccan sociologist. Islam and Democracy, ch. 9, Addison-Wesley Publishing Co. (Trans. 1992)