Tethys (moon) - Origin and Evolution

Origin and Evolution

Tethys is thought to have formed from an accretion disc or subnebula; a disc of gas and dust that either existed around Saturn for some time after its formation. The low temperature at the position of Saturn in the Solar nebular means that water ice was the primary solid from which all moons formed. Other more volatile compounds like ammonia and carbon dioxide were likely present as well, though their abundances are not well constrained.

The extremely water-ice-rich composition of Tethys remains unexplained. The conditions in the Saturnian sub-nebula likely favored conversion of the molecular nitrogen and carbon monoxide into ammonia and methane, respectively. This can partially explain why Saturnian moons including Tethys contain more water ice than outer Solar System bodies like Pluto or Triton as the oxygen freed from carbon monoxide would react with the hydrogen forming water. One of the most interesting explanations proposed is that the rings and inner moons accreted from the tidally stripped ice-rich crust of a Titan-like moon before it was swallowed by Saturn.

The accretion process probably lasted for several thousand years before the moon was fully formed. Models suggest that impacts accompanying accretion caused heating of Tethys's outer layer, reaching a maximum temperature of around 155 K at a depth of about 29 km. After the end of formation due to thermal conduction, the subsurface layer cooled, while the interior heated up. The cooling near-surface layer contracted, while the interior expanded. This caused strong extensional stresses in the moon's crust reaching estimates of 5.7 MPa, which likely led to cracking.

Since Tethys lacks substantial rock content, the heating by decay of radioactive elements is unlikely to have played a significant role in further evolution of this moon. This also means that Tethys may have never experienced any significant melting unless its interior was heated by tides. They may have occurred, for instance, during the passage of Tethys through an orbital resonance with Dione or some other moon. Still, present knowledge of the evolution of Tethys is very limited.

Read more about this topic:  Tethys (moon)

Famous quotes containing the words origin and/or evolution:

    Art is good when it springs from necessity. This kind of origin is the guarantee of its value; there is no other.
    Neal Cassady (1926–1968)

    The more specific idea of evolution now reached is—a change from an indefinite, incoherent homogeneity to a definite, coherent heterogeneity, accompanying the dissipation of motion and integration of matter.
    Herbert Spencer (1820–1903)