Tangent Bundle

In differential geometry, the tangent bundle of a differentiable manifold M is the disjoint union of the tangent spaces of M. That is,

where TxM denotes the tangent space to M at the point x. So, an element of TM can be thought of as a pair (x, v), where x is a point in M and v is a tangent vector to M at x. There is a natural projection

defined by π(x, v) = x. This projection maps each tangent space TxM to the single point x.

The tangent bundle to a manifold is the prototypical example of a vector bundle (a fiber bundle whose fibers are vector spaces). A section of TM is a vector field on M, and the dual bundle to TM is the cotangent bundle, which is the disjoint union of the cotangent spaces of M. By definition, a manifold M is parallelizable if and only if the tangent bundle is trivial. By definition, a manifold M is framed if and only if the tangent bundle TM is stably trivial, meaning that for some trivial bundle E the Whitney sum TME is trivial. For example, the n-dimensional sphere Sn is framed for all n, but parallelizable only for n=1,3,7 (by results of Bott-Milnor and Kervaire).

Read more about Tangent Bundle:  Role, Topology and Smooth Structure, Examples, Vector Fields, Higher-order Tangent Bundles, Canonical Vector Field On Tangent Bundle, Lifts

Famous quotes containing the word bundle:

    “There is Lowell, who’s striving Parnassus to climb
    With a whole bale of isms tied together with rhyme,
    He might get on alone, spite of brambles and boulders,
    But he can’t with that bundle he has on his shoulders,
    The top of the hill he will ne’er come nigh reaching
    Till he learns the distinction ‘twixt singing and preaching;
    James Russell Lowell (1819–1891)