Tangent Bundle - Canonical Vector Field On Tangent Bundle

Canonical Vector Field On Tangent Bundle

On every tangent bundle TM one can define a canonical vector field . If (x, v) are local coordinates for TM, the vector field has the expression

Alternatively, consider to be the scalar multiplication function . The derivative of this function with respect to the variable at time is a function, which is an alternative description of the canonical vector field.

The existence of such a vector field on TM can be compared with the existence of a canonical 1-form on the cotangent bundle. Sometimes V is also called the Liouville vector field, or radial vector field. Using V one can characterize the tangent bundle. Essentially, V can be characterized using 4 axioms, and if a manifold has a vector field satisfying these axioms, then the manifold is a tangent bundle and the vector field is the canonical vector field on it. See for example, De León et al.

Read more about this topic:  Tangent Bundle

Famous quotes containing the words canonical, field and/or bundle:

    If God bestowed immortality on every man then when he made him, and he made many to whom he never purposed to give his saving grace, what did his Lordship think that God gave any man immortality with purpose only to make him capable of immortal torments? It is a hard saying, and I think cannot piously be believed. I am sure it can never be proved by the canonical Scripture.
    Thomas Hobbes (1579–1688)

    My business is stanching blood and feeding fainting men; my post the open field between the bullet and the hospital. I sometimes discuss the application of a compress or a wisp of hay under a broken limb, but not the bearing and merits of a political movement. I make gruel—not speeches; I write letters home for wounded soldiers, not political addresses.
    Clara Barton (1821–1912)

    “There is Lowell, who’s striving Parnassus to climb
    With a whole bale of isms tied together with rhyme,
    He might get on alone, spite of brambles and boulders,
    But he can’t with that bundle he has on his shoulders,
    The top of the hill he will ne’er come nigh reaching
    Till he learns the distinction ‘twixt singing and preaching;
    James Russell Lowell (1819–1891)