Synthetic Molecular Motor

Synthetic Molecular Motor

Synthetic molecular motors are molecular machines capable of rotation under energy input. Although the term "molecular motor" has traditionally referred to a naturally occurring protein that induces motion (via protein dynamics), some groups also use the term when referring to non-biological, non-peptide synthetic motors. Many chemists are pursuing the synthesis of such molecular motors. The prospect of synthetic molecular motors was first raised by the nanotechnology pioneer Richard Feynman in 1959 in his talk There's Plenty of Room at the Bottom.

The basic requirements for a synthetic motor are repetitive 360° motion, the consumption of energy and unidirectional rotation. The first two efforts in this direction, the chemically driven motor by Dr. T. Ross Kelly of Boston College with co-workers and the light-driven motor by Feringa and co-workers, were published in 1999 in the same issue of Nature. In 2008 Petr Král and co-workers proposed electron tunneling motors continuously rotated by a permanent torque, opening the possibility of practical realization of a real molecular motor machine. It is expected that reports of more efforts in this field will increase as understanding of chemistry and physics at the nanolevel improves.

Read more about Synthetic Molecular Motor:  Chemically Driven Rotary Molecular Motors, Light-driven Rotary Molecular Motors, Experimental Demonstration of A Single Molecule-electric Motor

Famous quotes containing the words synthetic and/or motor:

    In every philosophical school, three thinkers succeed one another in the following way: the first produces out of himself the sap and seed, the second draws it out into threads and spins a synthetic web, and the third waits in this web for the sacrificial victims that are caught in it—and tries to live off philosophy.
    Friedrich Nietzsche (1844–1900)

    The motor idles.
    Over the immense upland
    the pulse of their blossoming
    thunders through us.
    Denise Levertov (b. 1923)