Synthetic Molecular Motor - Light-driven Rotary Molecular Motors

Light-driven Rotary Molecular Motors

In 1999 the laboratory of Prof. Dr. Ben L. Feringa at the University of Groningen, The Netherlands reported the creation of a unidirectional molecular rotor. Their 360° molecular motor system consists of a bis-helicene connected by an alkene double bond displaying axial chirality and having two stereocenters.

One cycle of unidirectional rotation takes 4 reaction steps. The first step is a low temperature endothermic photoisomerization of the trans (P,P) isomer 1 to the cis (M,M) 2 where P stands for the right-handed helix and M for the left-handed helix. In this process, the two axial methyl groups are converted into two less sterically favorable equatorial methyl groups.

By increasing the temperature to 20 °C these methyl groups convert back exothermally to the (P,P) cis axial groups (3) in a helix inversion. Because the axial isomer is more stable than the equatorial isomer, reverse rotation is blocked. A second photoisomerization converts (P,P) cis 3 into (M,M) trans 4, again with accompanying formation of sterically unfavorable equatorial methyl groups. A thermal isomerization process at 60 °C closes the 360° cycle back to the axial positions.

A major hurdle to overcome is the long reaction time for complete rotation in these systems, which does not compare to rotation speeds displayed by motor proteins in biological systems. In the fastest system to date, with a fluorene lower half, the half-life of the thermal helix inversion is 0.005 seconds. This compound is synthesized using the Barton-Kellogg reaction. In this molecule the slowest step in its rotation, the thermally induced helix-inversion, is believed to proceed much more quickly because the larger tert-butyl group makes the unstable isomer even less stable than when the methyl group is used. This is because the unstable isomer is more destabilized than the transition state that leads to helix-inversion. The different behaviour of the two molecules is illustrated by the fact that the half-life time for the compound with a methyl group instead of a tert-butyl group is 3.2 minutes.

The Feringa principle has been incorporated into a prototype nanocar. The car synthesized has a helicene-derived engine with an oligo (phenylene ethynylene) chassis and four carborane wheels and is expected to be able to move on a solid surface with scanning tunneling microscopy monitoring, although so far this has not been observed. The motor does not perform with fullerene wheels because they quench the photochemistry of the motor moiety. The ability of certain Feringa systems to act as an asymmetric catalyst has also been demonstrated.

Read more about this topic:  Synthetic Molecular Motor

Famous quotes containing the word motors:

    When General Motors has to go to the bathroom ten times a day, the whole country’s ready to let go. You heard of that market crash in ‘29? I predicted that.... I was nursing a director of General Motors. Kidney ailment, they said; nerves, I said. Then I asked myself, “What’s General Motors got to be nervous about?” “Overproduction,” I says. “Collapse.”
    John Michael Hayes (b. 1919)