Symmetric Graph

Symmetric Graph

In the mathematical field of graph theory, a graph G is symmetric (or arc-transitive) if, given any two pairs of adjacent vertices u1v1 and u2v2 of G, there is an automorphism

f : V(G) → V(G)

such that

f(u1) = u2 and f(v1) = v2.

In other words, a graph is symmetric if its automorphism group acts transitively upon ordered pairs of adjacent vertices (that is, upon edges considered as having a direction). Such a graph is sometimes also called 1-arc-transitive or flag-transitive.

By definition (ignoring u1 and u2), a symmetric graph without isolated vertices must also be vertex transitive. Since the definition above maps one edge to another, a symmetric graph must also be edge transitive. However, an edge-transitive graph need not be symmetric, since ab might map to cd, but not to dc. Semi-symmetric graphs, for example, are edge-transitive and regular, but not vertex-transitive.

Graph families defined by their automorphisms
distance-transitive distance-regular strongly regular
symmetric (arc-transitive) t-transitive, t ≥ 2
(if connected)
vertex- and edge-transitive edge-transitive and regular edge-transitive
vertex-transitive regular biregular
Cayley graph skew-symmetric asymmetric

Every connected symmetric graph must thus be both vertex-transitive and edge-transitive, and the converse is true for graphs of odd degree. However, for even degree, there exist connected graphs which are vertex-transitive and edge-transitive, but not symmetric. Such graphs are called half-transitive. The smallest connected half-transitive graph is Holt's graph, with degree 4 and 27 vertices. Confusingly, some authors use the term "symmetric graph" to mean a graph which is vertex-transitive and edge-transitive, rather than an arc-transitive graph. Such a definition would include half-transitive graphs, which are excluded under the definition above.

A distance-transitive graph is one where instead of considering pairs of adjacent vertices (i.e. vertices a distance of 1 apart), the definition covers two pairs of vertices, each the same distance apart. Such graphs are automatically symmetric, by definition.

A t-arc is defined to be a sequence of t+1 vertices, such that any two consecutive vertices in the sequence are adjacent, and with any repeated vertices being more than 2 steps apart. A t-transitive graph is a graph such that the automorphism group acts transitively on t-arcs, but not on (t+1)-arcs. Since 1-arcs are simply edges, every symmetric graph of degree 3 or more must be t-transitive for some t, and the value of t can be used to further classify symmetric graphs. The cube is 2-transitive, for example.

Read more about Symmetric Graph:  Examples, Properties

Famous quotes containing the word graph:

    When producers want to know what the public wants, they graph it as curves. When they want to tell the public what to get, they say it in curves.
    Marshall McLuhan (1911–1980)