Surface Integral - Surface Integrals of Differential 2-forms

Surface Integrals of Differential 2-forms

Let

be a differential 2-form defined on the surface S, and let

be an orientation preserving parametrization of S with in D. Then, the surface integral of f on S is given by

where

is the surface element normal to S.

Let us note that the surface integral of this 2-form is the same as the surface integral of the vector field which has as components, and .

Read more about this topic:  Surface Integral

Famous quotes containing the words surface and/or differential:

    If the man who paints only the tree, or flower, or other surface he sees before him were an artist, the king of artists would be the photographer. It is for the artist to do something beyond this: in portrait painting to put on canvas something more than the face the model wears for that one day; to paint the man, in short, as well as his features.
    James Mcneill Whistler (1834–1903)

    But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.
    Antonin Artaud (1896–1948)